Electronic Supplementary Information

Two-Dimensional Ru@MXene Catalyst for Highly Selective Ambient Electrocatalytic Nitrogen Reduction

Anmin Liu $^{1, a,*}$, Mengfan Gao $^{1, a}$, Xuefeng Ren d,*, Fanning Meng a, Yanan Yanga, Qiyue Yanga, Weixin Guana, Liguo Gaoa, Xingyou Lianga, Tingli Ma$^{b, c,*}$

a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, China.

E-mail: anmin0127@163.com, liuanmin@dlut.edu.cn

b Department of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, China.

E-mail: tinglima@life.kyutech.ac.jp

c Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0196, Japan.

E-mail: tinglima@life.kyutech.ac.jp

d School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.

E-mail: renxuefeng@dlut.edu.cn
Fig. S1 (a) UV-vis spectra for NH$_4^+$ standard solutions with different concentrations.
(b) Standard curve for NH$_4^+$ qualification.

Fig. S2 (a) UV-vis spectra for N$_2$H$_4$ standard solutions with different concentrations.
(b) Standard curve for N$_2$H$_4$ qualification.

Fig. S3 UV absorbance of hydrazine in electrolyte after different potential reaction.
Fig. S4 UV absorbance of electrolyte after different potential reactions.

Fig. S5 i-t curve of five times Test of Ru@MXene (-0.4V, 2h, N₂).

Fig. S6 UV absorbance curve of electrolyte after cycle test.
Fig. S7 Ru@MXene long-term i-t test in N$_2$ and Ar environment (-0.4 V).