Electronic Supplementary Information

Two-Dimensional Ru@MXene Catalyst for Highly Selective Ambient Electrocatalytic Nitrogen Reduction

Anmin Liu^{1, a,*}, Mengfan Gao^{1, a}, Xuefeng Ren^{d,*}, Fanning Meng^a, Yanan Yang^a,

Qiyue Yang^a, Weixin Guan^a, Liguo Gao^a, Xingyou Liang^a, Tingli Ma^{b, c, *}

^a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, China.

E-mail: anmin0127@163.com, liuanmin@dlut.edu.cn

^b Department of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, China.

^c Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0196, Japan.

E-mail: tinglima@life.kyutech.ac.jp

^d School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.

E-mail: renxuefeng@dlut.edu.cn

Fig. S1 (a) UV-vis spectra for NH_4^+ standard solutions with different concentrations.

(b) Standard curve for NH_4^+ qualification.

Fig. S2 (a) UV-vis spectra for N_2H_4 standard solutions with different concentrations.

(b) Standard curve for N_2H_4 qualification.

Fig. S3 UV absorbance of hydrazine in electrolyte after different potential reaction.

Fig. S4 UV absorbance of electrolyte after different potential reactions.

Fig. S5 i-t curve of five times Test of Ru@MXene (-0.4V, 2h, N₂).

Fig. S6 UV absorbance curve of electrolyte after cycle test.

Fig. S7 Ru@MXene long-term i-t test in N_2 and Ar environment (-0.4 V).