Supporting Information

Ultrafast Relaxation Dynamics in Bimetallic Plasmonic Catalysts

Sangwan Sim^{1,2}, Alyssa Bierlie³, Philip Mantos³, Steven McCrory³, Rohit P. Prasankumar^{1*},

Sanchari Chowdhury^{3*}

1 Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New

Mexico 87545

2 Division of Electrical Engineering, Hanyang University, Ansan 15588, Korea

3 Chemical Engineering Department, New Mexico Tech, Socorro, NM-87801

*rpprasan@lanl.gov , *sanchari.chowdhury@nmt.edu

Table 1: Different	properties o	of plasmonic	and catal	ytic metals ¹

Metal	Electron-phonon	Electronic	Density of states at	Interband
	coupling constant at	heat capacity	Fermi level	transition
	300K	at 300 K		threshold
Au	$2.6 \times 10^{16} \text{ Wm}^{-3} \text{K}^{-1}$	67 Jm ⁻³ K ⁻²	0.3 states/eV/atom	2.4 eV
Ni	$1 \times 10^{18} \mathrm{Wm^{-3}K^{-1}}$	464 Jm ⁻³ K ⁻²	2.2 states/eV/atom	0.25 eV
Pt	$1 \times 10^{18} \mathrm{Wm^{-3}K^{-1}}$	1230 Jm ⁻³ K ⁻²	5 states/eV/atom	Fermi level and
				<i>d</i> band overlaps

Figure S1: The size distribution histograms calculated from the TEM images for the (a) Au, (b) Au/Ni and (c) Au/Pt bimetallic nanoparticles.

Section 1 : Calculation of maximum temperature rise of the thermalized electrons:

From the two-temperature model, the maximum temperature rise of the thermalized electrons immediately after the pump excitation is given by the following equation,²

$$\Delta Temp_{e}^{max} = \left[Temp_{l}^{2} + 2N_{pp}E_{pp}/\gamma \right]^{1/2} - Temp_{l}$$
⁽¹⁾

where $Temp_l = 300 \text{ K}$ is the initial lattice temperature, $N_{pp} = 5 \times 10^{17} - 1.2 \times 10^{19} \text{ cm}^{-3}$ is the absorbed pump photon density, and $E_{pp} = 3.1 \text{ eV}$ is the pump photon energy, and γ is the electronic heat capacity. Assuming that gold absorbs most of the pump photons, we can use gold's electronic heat capacity ($\gamma = 67 \text{ Jm}^{-3} \text{K}^{-2}$) to estimate $\Delta Temp_e^{max}$, which is 10-220 K over the measured pump fluence range. The corresponding maximum lattice temperature rise is $\Delta Temp_l^{max} \sim \gamma Temp_e \Delta Temp_e^{max}/C_l \sim 0.06 - 2.2 \text{ K}$, where $C_l = 3.5 \times 10^6 \text{ Jm}^{-3} \text{K}^{-1}$ is the lattice heat capacity of gold.³

Section 2: Calculation of Absorbed Energy Density:

In order to account for the differences in nanoparticle size, optical density, and substrate coverage, the absorbed energy density (U_{abs}) for different nanoparticles is calculated using the following equation⁴,

$$U_{abs} = \frac{Energy \ absorbed \ per \ nanoparticle}{Nanoparticle \ volume} = \frac{Abs_{400} \ E_{pump} \pi r_{np}^2}{C \cdot \frac{4}{3} \pi r_{np}^3}$$

(2)

where Abs_{400} is the steady state absorbance of the nanoparticles at 400 nm. E_{pump} is the pump fluence, r_{np} is the radius of the nanoparticle and C is the fraction of the sample area covered by the nanoparticles.

,

Section 3: Differential Transmission Trace Fitting

The observed differential transmission traces exhibit a biexponential relaxation with two decay time constants, τ_{e-ph} and τ_{ph-ph} , as discussed in the main text. To extract these parameters from the measured $\Delta T/T(t)$ data (where t is the pump-probe time delay), we used the following fit formula, that results from the convolution of the exponential decay function and the Gaussian pump-probe cross correlation⁵,

$$\frac{\Delta T(t)}{T} = A_1 \exp\left(\frac{-t}{\tau_{e-ph}} + \frac{(w/2\sqrt{\ln 2})^2}{4\tau_{e-ph}^2}\right) \left[1 - \exp\left(\frac{w/2\sqrt{\ln 2}}{2\tau_{e-ph}} - \frac{t}{w/2\sqrt{\ln 2}}\right)\right]$$

$$+A_{2} \exp\left(\frac{-t}{\tau_{ph-ph}} + \frac{(w/2\sqrt{\ln 2})^{2}}{4\tau_{ph-ph}^{2}}\right) \left[1 - \exp\left(\frac{w/2\sqrt{\ln 2}}{2\tau_{ph-ph}} - \frac{t}{w/2\sqrt{\ln 2}}\right)\right],$$
 (3)

where the first and second term on the right-hand side represent the electron-phonon and phononphonon scattering dyamics, respectively, and A_1 and A_2 are amplitudes for each term. Table 2 shows the best fitting parameters for Figure 3(a) in the main text. w is the experimentally obtained pump-probe correlation width, which was fixed at ~ 100 fs during the fitting procedure.

Table 2: Best fitting parameters for the normalized $\Delta T/T$ traces in Figure 3(a):

Nanoparticle	<i>A</i> ₁	A ₂	τ_{e-ph} (ps)	$ au_{ph-ph}$ (ps)
Au	0.526	0.0309	4.25	629
Au/Pt	0.441	0.0925	1.12	782
Au/Ni	0.546	0.0685	0.98	349

References:

- 1. <u>http://www.faculty.virginia.edu/CompMat/electron-phonon-coupling/</u>).
- 2. C. Voisin, N. Del Fatti, D. Christofilos and F. Vallée, *The Journal of Physical Chemistry B*, 2001, **105**, 2264-2280.
- 3. W. S. Fann, R. Storz, H. W. K. Tom and J. Bokor, *Physical Review Letters*, 1992, **68**, 2834-2837.
- J. S. D. Giulia Tagliabue, Mohamed Abdellah, Adela Habib, Yocefu Hattori, Kaibo Zheng, Sophie E. Canton, David J. Gosztola, Wen-Hui Cheng, Ravishankar Sundararaman, Jacinto Sa, Harry A. Atwater, arXiv:1810.04238 2018.
- 5. D. J. Hilton and C. L. Tang, *Physical Review Letters*, 2002, **89**, 146601