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1 Probability distribution of sur-
face heights

The continuous probability distribution for the surface
heights follows a Gaussian distribution, given by:

fh =
e−(r−h)2/(2ρ2)

ρ
√

2π
(1)

where r is the reference surface, h is the deviation with
respect to r, and ρ is the surface roughness (ρ = 0 corre-
sponds to a flat surface).

Fig. 1 shows the surface height distribution, with
roughness ρ = 0.3 nm.
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Fig. 1 Surface height distributions, with ρ = 0.3 nm.

2 Effective interparticle interactions
Fig 2 shows the effective inter-particle interactions in a
longer range than that considered in Fig. 2D in the main
document.
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Fig. 2 Inter-particle interactions as a function of Ca(OH)2, in
the range of inter-particle distance 1.0σ − 1.5σ.

2.1 Particle size dependence of the effec-
tive interactions

The dependence of the effective interactions on the par-
ticle size is shown in Fig. 3. The increase of nanoparticle
size results in an increase of the potential well depth,
which has the consequence of increasing the minimum
surface roughness required to stabilize the nanoparticle
suspension. Larger particles featuring the same surface
roughness, for instance ρ = 1.5 Å should therefore tend
to aggregate with increasing adhesive energies.
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Fig. 3 Inter-particle interactions as a function of particle size σ
and surface roughness ρ.

3 Langevin dynamics
To account for the stochastic collision of the solvent with
the nanoparticles, and therefore Brownian motion, we
used Langevin dynamics1. In this method, a friction force
and noise term are added to the equations of motion:
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Fig. 4 Time evolution of the effective energy per particle, as a
function of the timestep and the damping parameter, for the smooth
potential of particles with σ = 70nm.

dx(t)

dt
= v(t) (2)

m
dv(t)

dt
= −ζv(t)− dU

dt
+ F (t) (3)

where x and v are the position and velocity of a nanopar-
ticle, m is its mass, ζ is the friction coefficient, U is
the interaction energy between particles, and F (t) is the
stochastic noise term. This noise term fulfills 〈F (t)〉 = 0
and 〈F (t1)F (t2)〉 = Γ(t1 − t2), where Γ = 2ζkBT quan-
tifies the strength of the stochastic noise1. We used the
LAMMPS2 implementation of the thermostat proposed
by Bussi and coworkers3. In order to verify the accuracy
of the integration, we used the effective energy conserva-
tion defined as3:

H̃ = Etot −∆Etstat (4)

where Etot is the total energy of the system, and ∆Etstat
is the increment in energy due to the thermostat. We
monitored the effective energy conservation for different
values of timestep and damping parameters (see Fig. 4),
for the interaction potential of particles with σ = 70nm,
surface roughness ρ = 1.5 Å , and CaOH2 concentra-
tion c = 0 mM, which corresponds to the steepest and
strongest attractive potential. We find effective energy
conservation for ∆t = 1.0× 10−5, in a range of damping
parameters 1-100 τ

water
, where τ

water
≈ 8 × 10−4 in re-

duced units which corresponds to 0.8 ns in SI units, using
the density of calcite 2710 kg/m3, and the nanoparticles
of diameter 70 nm.

4 Calculation of fractal dimension
We present an example of the box counting algorithm,
for the percolating gel shown in Fig. 3C in the main
document. The system is divided in Nb = 1, 2, 3 . . . seg-
ments on each dimension, and the number of filled boxes
is counted. The log-scale plot of the number of filled
boxes Nf as a function of L/l gives the fractal dimen-
sion, which is probed on the ranges of l = [1σ, 5σ] for
the local fractal dimension, and l = [5σ, L] for the global
fractal dimension. The variation in the slope at ≈ 5σ
corresponds to the transition between the global struc-
ture of the cluster (i.e. its space-filling characteristics)
and the local structure of the cluster.
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Fig. 5 Number of filled boxes as a function of the inverse of the
box length normalized by the simulation cell size L, for the perco-
lating cluster at φ = 0.07, ρ = 1.5 Å and CaOH2 concentration
c = 30 mM (shown in the main document as the structure in Fig.
3C. The global fractal dimension is calculated with the slope in the
range l = [5σ, L] and the local fractal dimension is calculated with
the slope in the range l = [1σ, 5σ].
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