Electronic Supplementary Information

A new perspective of the lanthanide metal–organic frameworks: tailoring Dy-BTC nanospheres for rechargeable Li-O₂ batteries[†]

Dan Liu,^{a‡} Xinmin Zhang,^{b‡} Yan-Jie Wang,^{a*} Shuyan Song,^c Lifeng Cui,^a Hongbo Fan,^a Xiaochang Qiao^a and Baizeng Fang^{d*}

^aSchool of Materials Science and Engineering, Dongguan University of Technology, No. 1, Daxue Rd, Songshan Lake, Dongguan, Guangdong, P. R. China. Email: <u>wyj@dgut.edu.cn</u> ^bHEC R&D Center, Institute of Electronic Materials, Dongguan, Guangdong, P. R. China ^cState Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China. ^dDepartment of Chemical & Biological Engineering & Clean Energy Research Center,

University of British Columbia, 2360 East Mall, Vancouver, B.C. V6T 1Z3, Canada. Email: bfang@chbe.ubc.ca

† Electronic supplementary information (ESI) available. See DOI: 10.1039/x0xx00000x

[‡] These authors have contributed equally to this work.

	Hexacoordinate	$S(C_{5v})$	$S(O_h)$	$S(D_{3h})$
Dy-BTC	Dy1	15.22	10.04	5.64
S = symmetry				

Table S1. Distortion values calculated for the Dy^{III} ions geometry.

Figure S1. a) The SEM image of the bulk crystalline Dy-BTC, b) PXRD patterns and c) FTIR spectra.

Figure S2. a) Low-pressure N_2 -adsorption isotherms at 77 K and b) the pore size distribution for the bulk crystalline Dy-BTC (the insert shows the enlarged plot of the marked area with red circle).

Evidently, the bulk crystalline Dy-BTC is dominated by micropores although a small fraction of mesopores exist.

Figure S3. Band structure and DOS of a) Dy-BTC and b) Dy-BTC-O (i.e., Dy-BTC after O₂ adsorption).

To reveal the microscopic mechanism of the excellent performance of Dy-BTC, we performed the first-principles calculations of oxygen adsorption energy and electronic structure of Dy-BTC as well as its after adsorption of O_2 . We noticed that it exists unoccupied f orbitals around Fermi level in the electronic structure of Dy-BTC (Figure S3a). It is considered that these unoccupied f orbitals are prone to coordinate with O_2 . Comparing the electronic structures between Dy-BTC and its after O_2 -adsorption (Figure S3b), we discover, yet again that the unoccupied orbitals around Fermi level shift under the Fermi level due to its coordination with O_2 . Thus, we could conclude that the unoccupied f orbitals play an important role in the process of adsorption of O_2 .

Figure S4. SEM images and EDX mappings of the Dy-BTC nanospheres-super P composite electrode at different stages: a) before discharge; b) after discharge; c) after charge.

Figure S5. SEM images of the bulk crystalline Dy-BTC-super P composite electrode: a) before the test; b) half discharged; c) fully discharged; (d) fully charged; e) XRD patterns of the electrode at different test states. The diffraction peaks located at 12.5° (the characteristic peak of Dy-BTC MOFs marked by @) disappeared after fully charging implying that the bulk crystalline Dy-BTC collapsed after being recharged, which is consistent with the observation from the SEM image shown in Figure S4d.

Figure S6. DEMS of the bulk crystalline Dy-BTC-based electrode during a) discharge and b) charge.

Figure S7. XRD patterns of the Dy-BTC nanospheres-super P composite electrode after the 50th, 60th and 76th cycle of charge/discharge.

Figure S8. a) Rate capability of the bulk crystalline Dy-BTC-based electrode in pure O_2 with a fixed capacity of 1000 mAh g^{-1} ; b) Representative cycling response of the bulk crystalline Dy-BTC-based electrode under the specific capacity limit of 1000 mAh g^{-1} , with discharge/charge curves at cycle 1, 5, 10, 25, and 26 shown. Current: 200 mA g^{-1} ; c) Discharge voltage and capacity retention *vs.* cycle number.