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Materials synthesis

Preparation of 3DSNG/NF and 3DG/NF

The preparation method for 3DSNG and 3DG is from our previous work with a 

modification1-4. In detail, the nickel foams (380 g m-2, 5×10 cm) were washed with diluted 

HCl, deionized water, isopropanol before they were loaded in a furnace. 200 mg phenothiazine 

(C12H9NS) was placed upstream of the furnace. The furnace was pumped to 1×10-2 Pa before 

introduction of 300 sccm H2 and Ar mixed gas. The nickel foams were then heated to 1000 °C 

and annealed for 20 minutes. After cooling down to 850 °C, the phenothiazine was slowly 

heated to 180 °C with a heating belt which was slowly sublimed into the furnace. After 30 

minutes of growth, the furnace was rapidly cooled to room temperature. The 3DSNG grown 

on nickel foam can be obtained. For comparison, 3DG was grown on nickel foam using 

methane as a carbon source at a growth temperature of 1000 °C, and other growth parameters 

were the same as 3DSNG.

Preparation of NiSe2/3DSNG/NF and NiSe2/3DG/NF

NiSe2/3DSNG/NF was prepared by hydrothermal method. Specifically, 0.632 g of selenium 

powder (Se) were placed in 65 mL of deionized water. 0.378 g of sodium borohydride 

(NaBH4) was added drop by drop and stirred for 1 hour. The 3DSNG/NF with the size of 1 

cm × 1.5 cm was immersed in the above solution, and slowly stirred to fully infiltrate. it was 

then transferred to an autoclave and was heated to 180 °C for 10, 15 and 20 hours, respectively. 

The mass of the NiSe2 could be calculated by weighing the mass of 3DSNG/NF before and 

after hydrothermal reaction. Unless specific statement, the NiSe2/3DSNG/NF discussed in this 

study has prepared by a hydrothermal time of 20 hours and the mass of NiSe2 loading is about 



2.65 mg. For comparison, we also prepared a NiSe2 and intrinsic graphene foam composite 

(NiSe2/3DG/NF) with the same synthesis parameters.

Materials Characterizations

Scanning electron microscope (SEM) was performed on a JEOL JSM-7000F. 

Transmission electron microscope (TEM) images were obtained by using a Tecnai F20 

at 200 kV. Elemental distribution was studied using energy dispersive X-ray 

spectroscopy on a Tecnai F20 equipped with an Oxford/INCA EDS. The X-ray 

diffraction (XRD) patterns were obtained by a X’Pert PRO (PNAlytical) with a Cu Kα 

irradiation (λ = 1.54 Å). X-ray photoelectron spectroscopy (XPS) results were recorded 

by a Kratos XSAM800 with Al Ka radiation (144 W, 12 mA, 12 kV). Raman spectra 

were recorded by using a Renishaw Raman spectrometer with a 532 nm laser. 

Electrochemical measurements

NiSe2/3DG/NF, NiSe2/3DG/NF, 3DSNG/NF, 3DG/NF, NF can be directedly used as electrode 

with the contact area in the electrolyte of 1.0 cm2. The commercial 20% Pt/C catalyst was 

prepared with 20 mg Pt/C in 1 mL water/ethanol (1:1 by volume), and then 60 μL of Nafion 

solution was added and sonicated for 30 minutes. Then, it was loaded on nickel foam with a 

pipette. The mass loading of Pt/C is about 2.70 mg cm-2. The counter electrode was carbon 

rod and reference electrode was saturated calomel (SCE) (in acid electrolyte) and Hg/HgO (in 

alkaline electrolyte), respectively. The SCE potential E(SCE) and Hg/HgO potential E(Hg/HgO) 

was converted to a reversible hydrogen electrode potential E(RHE) by E(RHE) = E(SCE) + 0.245 

V + 0.059 pH and E(RHE) = E(Hg/HgO) + 0.098 V + 0.059 pH. The polarization curves were 

recorded by linear sweep voltammetry at a scan rate of 0.5 mV s-1 with iR compensation. The 



oxygen evolution overpotential (η) is calculated by η = E(RHE) - 1.23 V. The amount of H2 and 

O2 was detected with an on-line gas chromatography (GC9790, using argon as a carrier gas) 

at constant current of 10, 30 and 50 mA in case of water splitting every 5 min. The Faradaic 

efficiency is calculated as the ratio of measured amount of H2 and O2 and theoretical amount 

of H2 and O2 according to Faraday’s law.



Figure S1. SEM images of NiSe2/3DSNG/NF. (a-c) hydrothermal reaction time is 10 hours; (d-

f) hydrothermal reaction time is 15 hours.



Figure S2. The TEM image (a) and corresponding SAED pattern (b) of 3DSNG.



Figure S3. The TEM image (a) and corresponding SAED pattern (b) of NiSe2/3DSNG.



Figure S4. HRTEM image of 3DSNG exfoliated from 3DSNG/NF.



Table S1. The ICP-MS results of N and S doping contents in 3DSNG/NF. Sample A and 

B are 3DSNG/NF before and after hydrothermal reaction, respectively.

Samples Element Content (at%)

A N 2.57

A S 2.96

B N 2.55

B S 2.95



Figure S5. The Ni spectrum of 3DSNG/NF before loading of NiSe2.



Table S2 Comparison of HER catalytic performance of NiSe2/3DSNG/NF and the reference 

group in 0.5 M H2SO4. 

Samples η10 (mV) η50 (mV) η100 (mV) Tafel slop (mV dec-1)

NiSe2/3DSNG/NF 130 192 221 28.56

NiSe2/3DG/NF 205 277 315 43.46

3DSNG/NF 223 316 366 48.62

3DG/NF 283 379 430 98.74

NF 382 488 528 183.91

Pt/C 45 74 94 32.55



Figure S6. (a) Nyquist diagram of NiSe2/3DSNG/NF and the reference group at 300 mV 

overpotential; (b) Nyquist plot after amplification.



Figure S7. (a) polarization curve of NiSe2/3DSNG/NF in 0.5 M H2SO4 before and after 5000 

cycles; (b) current-time curve at overpotential of 195 mV.



Table S3 Comparison of HER catalytic performance of NiSe2/3DSNG/NF and the reference 

group in 1 M KOH. 

Samples η10 (mV) η50 (mV) η100 (mV) Tafel slop (mV dec-1)

NiSe2/3DSNG/NF 177 247 269 75.95

3DSNG/NF 226 299 331 103.31

NF 265 395 493 165.94

Pt/C 64 84 101 42.77



Table S4. Comparison of HER performance of NiSe2/3DSNG/NF with other reported highly 

active HER electrocatalysts.

Catalysts
Overpotential@j 

(mV@mA cm-2)
Electrolytes Ref.

NiSe2/3DSNG/NF 269@100 1 M KOH This work

NiSe2/3DSNG/NF 247@50 1 M KOH This work

NiSe2/3DSNG/NF 177@10 1 M KOH This work

NiSe2-Ni2P/NF 102@10 1 M KOH 5

CoP/NCNHP 115@10 1M KOH 6

NiCoP 124@10 1M KOH 7

CoSe/Ti 121@10 1M KOH 8

NiSn@C 160@10 1M NaOH 9

WP/CC 150@10 1M KOH 10

Co-Ni-B 133@10 1M NaOH 11

Co-Mo-Sx ~201@5 0.1M KOH 12



Figure S8. (a) Nyquist diagram of NiSe2/3DSNG/NF and the reference group at 300 mV 

overpotential in 1 M KOH; (b) Nyquist plot after amplification.



Figure S9. (a) polarization curve of NiSe2/3DSNG/NF in 1 M KOH before and after 5000 

cycles; (b) current-time curve at overpotential of 247 mV.



Table S5 Comparison of OER catalytic performance of NiSe2/3DSNG/NF and the control 

group in 1 M KOH. 

Samples
η10 (mV) η50 (mV) η100 (mV)

Tafel slop 

(mV dec-1)

NiSe2/3DSNG/NF 94

(Ni2+ oxidation)

124

(Ni2+ oxidation)

256 42.89

3DSNG/NF 296 329 348 47.16

NF 428 613 760 174.44

RuO2 280 378 418 79.83



Table S6. Comparison of OER performance of NiSe2/3DSNG/NF with other reported highly 

active OER electrocatalysts.

Catalysts
Overpotential@j 

(mV @ mA cm-2)
Electrolytes Ref.

NiSe2/3DSNG/NF 256@100 1 M KOH This work

NiSe2/3DSNG/NF
124@50

(Ni2+ oxidation)
1 M KOH This work

NiSe2/3DSNG/NF
94@10

(Ni2+ oxidation)
1 M KOH This work

NiSe2-Ni2P/NF 183@10 1 M KOH 5

Co4N/CC 257@10 1 M KOH 13

NiFe LDHs 305@10 1 M KOH 14

Ni45Fe55 oxyhydroxide 310@10 0.1 M KOH 15

CoCr LDH 340@10 1 M NaOH 16

Ni-Co-P HNBs 270@10 1 M KOH 17

Ni3N/NF 399@20 1 M KOH 18

Na0.08Ni0.9Fe0.1O2 260@10 1 M KOH 19



Figure S10. The SEM (a and b) and TEM (c and d) images of the NiSe2/3DSNG/NF after the 

stability test. 



Table S7. Comparison of overall water splitting performance for the electrolyzer assembled by 

two NiSe2/3DSNG/NF electrodes with other reported alkaline electrolyzer assembled by 

bifunctional catalysts.

Catalysts
Voltage (V) 

@10 mA cm-2
Electrolytes Ref.

NiSe2/3DSNG/NF 1.59 1 M KOH This work

NiFeRu-LDH 1.52 1 M KOH 20

Ni0.51Co0.49P 1.57 1 M KOH 21

NiCoP 1.64 1 M KOH 22

Ni-Fe-P 1.67 1 M KOH 23

MoO2/NF 1.53 1 M KOH 24

Cu@NiFe LDH 1.54 1 M KOH 25

FeNi3N/NF 1.62 1 M KOH 26

Co4NiP 1.59 1 M KOH 27

Ni3Se2/NF 1.61 1 M KOH 28
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