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1 General formula for the field-induced orientational order parame-
ter:

When the dispersion is isotropic in the absence of field and the particles have cylindrical symmetry
around some particle axis p, the induced order S(E) is given by:
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where Θ is the angle between e and p, k is the Boltzmann constant, T is the temperature, and the
brackets denote a statistical average.

2 Rise behavior of the birefringence under field pulses:

In general, three distinct relaxation times are involved in the rotational relaxation process under
field. The first one, 1/(6Dr

⊥), is the time related to the reorientation of a second rank tensor,
namely the polarizability α of the particle, under a DC field. The two additional terms, 1/(2Dr

⊥)
and 1/(Dr

⊥ +Dr
‖) are respectively the relaxation times of the longitudinal and transverse compo-

nents of the permanent dipole moment of the particle [1]:
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A simpler treatment of the data is possible when Dr
‖ ' Dr

⊥ or when Dr
‖ � Dr

⊥. In both cases,
only two exponentials are needed to fit the rise curve:
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where β is respectively (p‖ − p⊥)/q and p‖/(q − p⊥) in each case.
However, the numerical estimate of the diffusion coefficients yields Dr

‖ ' 3Dr
⊥ for our CdSe par-

ticles so that neither approximations apply. In our case, a simpler approach consists in comparing
the two areas limited by the on- and off- curves i.e. the integrals:
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3 Calculation of the rotational diffusion constants for isolated and
stacked NPL:

An isolated CdSe nanoplatelet (Fig. 1A) has a shape of a rectangular prism, with “bare” (i.e.
without the ligand brush) dimensions Lb

1=20 nm, Lb
2=9 nm and Lb

3=1.5 nm along the principal
1, 2 and 3- axes, respectively. However, in the rotational diffusion process, the particle and the
ligand brush reorient together as a single rigid body. So, the relevant dimensions are those of the
“dressed” particle (i.e. including the ligand brush). Assuming that the ligands are evenly located
all over the particle surface in a brush of 1.2 nm thickness, the dressed particle dimensions along
the three axes, Li, are respectively 22.4, 11.4, and 3.9 nm. To calculate the rotational diffusion
coefficients of the dressed particle in hexane (with viscosity η = 0.309× 10−3 Pa.s at room tem-
perature), we approximate the particle as an equivalent ellipsoid with the same volume and axial
ratios. Then, from the Perrin formulae [2, 3] we obtain Dr

1 = 1.8 × 106 s−1, Dr
2 = 7 × 105

s−1, Dr
3 = 7.6 × 105 s−1 for the rotational diffusion constants Dr

i around the axis i = 1, 2 and
3. Therefore, the best uniaxial approximation for the reorientation of an isolated CdSe platelet
is actually a rod with length L‖ = L1, diameter L⊥ =

√
4L2L3/π and approximate rotational

diffusion constants Dr
‖ = 1.8× 106 s−1 and Dr

⊥ = 7.3× 105 s−1.

In a similar way, we calculated the three rotational diffusion constants for stacks of N platelets
Dr

i (N) versus the stack length LN = NL3. For values of N > 20, which are the experimen-
tally relevant ones, even at short aging times (t = 25 days), the stacks behave as rod-like objects
with long axis parallel to the 3-axis of the platelet. Then, Dr

⊥ is much smaller than Dr
‖ and its

dependence on N is shown in Figure S1.

3.1 Calculation of ∆np

The intrinsic birefringence of CdSe being small [4], it can be neglected in front of the large form
birefringence which only depends on the shape of the particle. From the dimensions of the NPL
and the refractive index of the solvent (ns=1.373, the ligand brush and the solvent having very
close refractive index, we approximate that they are equal) and CdSe (nCdSe '2.69), numerical
calculations yield npi =2.51, 2.35, and 1.85 for the specific particle indices along the principal axis
i=1,2,3 respectively. The rod-like approximation of an isolated particle leads to ∆np = np‖−n

p
⊥ =

0.39.

3.2 Additivity of the components of the polarizability tensor at optical and low
frequencies

The additivity of the αi components actually depends on the physical origin of the polarizability.
Let us first consider the polarizability at optical frequencies, αopt, which defines the refractive
indices of the particle and its specific birefringence. The intrinsic birefringence of CdSe is small,
∆nCdSe < 0.02 [4], and can be neglected in front of the large form birefringence. The latter only
depends on the particle shape, its average refractive index, nCdSe ' 2.69, and the refractive index
of the solvent ns=1.373 (strictly speaking the particle is surrounded by a thin ligand brush whose
refractive index is close that of the solvent). With the bare particle dimensions, the numerical
calculation [5] gives npi = 2.51, 2.35 and 1.85 for the specific particle indices along the principal
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Figure S1: Calculated values, as a function of N, of the rotational diffusion constant of stacks of N
CdSe platelets around an axis perpendicular to their revolution axis. The vertical blue straight line
separates two domains where, at small N, the stacks have their revolution axis along the 1-axis
and, at large N, the stacks have their revolution axis along the 3-axis. The black line is a guide
to the eye whereas the red line is a fit of the data with a power-law dependence with an exponent
close to -3 (-2.93).

axes i=1, 2, 3 respectively. The rod-like approximation of an isolated particle leads to ∆np =
np‖−n

p
⊥ = 0.39. We underline that the biaxial optical polarizability tensor, αopt, of the platelet is

closer to an oblate tensor with revolution symmetry around the 3-axis, as expected for a disk, than
to a prolate tensor with revolution symmetry around the 1-axis. The averaging process arising from
the fast rotation of the platelet around its 1-axis makes the optical polarizability tensor prolate.

We now consider the polarizability of the particles and the stacks, α(f), at low frequency (i.e.
comparable to the field frequency), which is also important because it gives rise to the induced-
dipole part of the field torque. Three different physical mechanisms mainly contribute to α(f)in
colloidal dispersions. The first one is due to the polarization of the bound charges at the particle
surface because of the contrast of dielectric constant at the particle/solvent interface. This con-
tribution, αdiel only depends on the aspect ratio of the particle and the dielectric contrast [6].
Similar to αopt, αdiel for the stacks should be strictly additive because the dielectric constant of
the ligand layer between the stacked particles is similar to that of the solvent. Moreover, αdiel

should remain constant in the frequency range used here because its relaxation frequency is very
high, close to the optical frequency range. The second mechanism, the Maxwell-Wagner (MW)
polarization, is related to the accumulation on the particle surface of mobile (conductivity) charges
when at least one of the two media has a finite conductivity [7, 8]. This contribution, αMW can
be very large when the conductivity contrast is high. If the particle is a perfect dielectric and the
solvent has finite conductivity (as usually for aqueous dispersions), the relaxation frequency of this
contribution, fMW is of the order of magnitude of the charge relaxation frequency f ch of the sol-
vent. Then, αMW can be neglected in our external-electrodes experiment because the frequencies
f < fMW do not penetrate into the sample. In the present case, however, the semiconductor CdSe
particles are dispersed in hexane, an almost perfect dielectric fluid, and the conductivity contrast
is reversed. We then expect fMW � f ch, and the MW mechanism can give the main contribution
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to αf in this case. Moreover, we expect that the ligand brush has a low conductivity, similar to
that of hexane, resulting in additivity of fMW for the stacks. The third relaxation mechanism is
that of Maxwell – Wagner - O’Konski (MWO) and is related to the polarization of the counter-ion
atmosphere around a charged colloidal particle [9, 10, 11]. This contribution is particularly large
for aqueous systems due to the large dissociating power of water and the resulting large surface
charge of the particles. However, we expect this contribution to be negligible in our case, due to
the apolar character of hexane.

3.3 Discussion of the relationship between NDC and µN
‖

Despite the linear increase in time of bothNDC and µN‖ , these quantities are not really proportional
(see figure 6 of the main text), as would be expected from the relation µN‖ /N = µ13. Indeed, this
ratio is not constant but is significantly lower for the short stacks than for the long ones. This
discrepancy can only be attributed partially to the stack polydispersity and is probably due to the
presence, at short ageing times, not only of small stacks but also of a large proportion of isolated
particles. Let us consider a simple system consisting of isolated platelets with dipole moment√
p‖ − p⊥ ' µ1‖ and volume fraction xΦ, and monodisperse stacks with the dipole moment

µN‖ = Nµ13 and volume fraction (1− x)Φ. The total induced birefringence is:

∆n = ∆n1 + ∆nN ' 1

15
Φ∆npE2

[
−x(µ1‖)

2 + (1− x)(Nµ13)
2
]
, (S6)

where we used the approximation p‖ − p⊥ �| q | for both the stacks and the isolated particles.
For the shortest stacks St1, we estimate from the size of the overshoot in Fig. 3A:

∆n1/∆nN ' −x1(µ1‖)
2/(1− x1)(Nµ13)2 ' −0.1, (S7)

with N '23. From the longest stacks, St5, we assume that most platelets are stacked, x� 1,
giving µ13 ' µN‖ /N ' 80D and from Eq (S7) we deduce that x ' 0.8 for the shortest stakcs,
meaning that most of the particles are still isolated. For the St2 stacks, , there is still a small
opposite-sign signal at the beginning of the on- and off- TEB curves, which indicates the presence
of remaining isolated particles. The signal of the St3 stacks no longer shows this signature of
isolated particles, so that | ∆n1/∆nN |< 0.01. However, even in this case, with N ' 32 we only
obtain x < 0.45 This shows that even such an important fraction of isolated particles is “invisible”
in the TEB signal due to the much more efficient coupling of the stacked particles with the field.
We note that the Dr

⊥ value, as well as the NDCvalue deduced from it, are rather insensitive to
the presence of isolated platelets because of the small amplitude of their induced birefringence,
∆n1 � ∆nN . Therefore, the presence of a still large population of isolated particles in the early
stacking stages explains the observed disagreement between the time evolutions of µN‖ and NDC.

References

[1] Tinoco, I. & Yamaoka, K. The Reversing Pulse Technique in Electric Birefringence. The
Journal of Physical Chemistry 63, 423–427 (1959).

[2] Perrin, F. Mouvement brownien d’un ellipsoide - I. Dispersion diélectrique pour des
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Figure S2: 2D synchrotron small Angle X-ray scattering patterns of CdSe Nanoplatelets stacks.
On the left, no electric field is applied whereas on the right a small electric field orients the NPL
stacks. This small alignment effect is visible from the small, very broad, peak (around 90) in the
azimuthal profile of the diffracted intensity.
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