$K_2Ti_6O_{13}$ /carbon core-shell nanorods as superior anode material for high-rate potassium ion batteries

Cheng Liu^a, Huili Wang^a, Shiyu Zhang^a, Muyao Han^a, Yu Cao^a, Shuo Liu^a, Zhanxu Yang^{*b} Aibing Chen^{*c} and Jie Sun^{*a,d}

^a Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. E-mail: jies@tju.edu.cn

^b College of Chemistry, Chemical Engineering and Environment Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, China. E-mail: zhanxuy@126.com; yangzhanxu@Inpu.edu.cn

^c College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, 70 Yuhua Road, Shijiazhuang 050018, China. E-mail: chen_ab@163.com

^d State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China

Fig.S1 (a) Ball and stick model of the crystal structure of the K₂Ti₆O₁₃ with the space group C2/m (a=15.82428 Å, b=3.82021 Å, c=9.23647 Å); SEM images of as-prepared samples: (b) K₂Ti₆O₁₃; (c) KTO/C-600 and (d) KTO/C-800.

	κ.			
the state of the second st		and the second se		
0	\mathbf{C}	Element	wt%	At%
0	C	Element K	wt% 16.78	At% 12.51
0	C	Element K Ti	wt% 16.78 54.83	At% 12.51 33.37
0	C	Element K Ti O	wt% 16.78 54.83 24.44	At% 12.51 33.37 44.54

Fig.S2 EDX mapping of KTO/C-700

Journal Name

Fig.S3 XRD patterns of the KTO/C-900, KTO/C-1000, KTO/C-1100 and KTO/C-1200

Fig.S4 TGA/DSC of KTO/C precursor at a rate of 10 °C min⁻¹ in N₂

Fig.S5 Adsorption-desorption isotherms of $K_2Ti_6O_{13}$ and $K_2Ti_6O_{13}/C$ -700

Fig.S6 Pore size distributions of KTO/C-700

Fig.S7 SEM image of cross-section of electrode for $K_2Ti_6O_{13}/C$ -700

The mass loading of the active materials were about 1.1 mg cm⁻¹. As shown in Fig.S5, a typical electrode thickness was about 8.89 µm. Thus, the density of the electrode was about 1.77 g cm⁻³ (based on the total mass including active material, super-p carbon and PVDF, except for copper collector). In order to precisely characterize the compaction density of the as-prepared products themselves, the obtained powders were pressed into green bodies (Fig.S6) under 10 MPa pressure by using a manually tablet machine (769YP-15A, Tianjin KeQi High & New Technology Corporation, Tianjin, China). The obtained values are shown in the table S1.

Fig.S8 SEM images of cross-sections of green bodies of (a, b) K₂Ti₆O₁₃ and (c, d) K₂Ti₆O₁₃/C-700 with a manually tablet machine (769YP-15A, Tianjin KeQi High & New Technology Corporation, Tianjin, China) under about 10 MPa pressure.

Table S1. Compacted density of the several common anode materials

Journal Name

COMMUNICATION

Morphology	Synthesis method	Compacted density	Pressure	Application	Ref.
		(g cm ⁻³)	(MPa)		
Sulfur and nitrogen dual-doped graphene	Chemical vapor deposition	0.4	10	LIBs	[1]
Reduced graphene oxide	Solvent evaporation method	1.3	15	Supercapacitors	[2]
SiO _x @Fe ₃ O ₄ @FLG	Ball milling	1.86	16	LIBs	[3]
Si@SiO ₂	High pressure and ball milling	1.11	17.6	LIBs	[4]
Li ₄ Ti ₅ O ₁₂	Pyrolysis	1.7	-	LIBs	[5]
Epanded	-	1.68	7	Fuel cells	[6]
graphite					
Carbon nanotubes	-	0.58	0.3-0.4	-	[7]
Carbon nanowires	-	0.52	0.3-0.4	-	[7]
K ₂ Ti ₆ O ₁₃	hydrothermal	1.91	10	PIBs	This work
K ₂ Ti ₆ O ₁₃ /C	bydrothormal	1.88	10	PIBs	Thic
	process				work

Fig.S9 DFT predicted crystal structures of $K_{2+x}Ti_6O_{13}$. (a) $K_{2+0.5}Ti_6O_{13}$, (b) $K_{2+1}Ti_6O_{13}$ and (c,d) the corresponding electron density difference plots.

COMMUNICATION

Journal Name

	а	b	С	β	Cell vol	x in K _{2+x} Ti ₆ O ₁₃
orignal	17.099	3.727	9.686	100.407	607.068	0
Comple A	16 700	4.012	0 501	00 (20	C22.085	0.5
Sample A	16.730	4.012	9.581	99.629	633.985	0.5
Sample B	16.470	4.035	9.755	100.549	637.374	1
·						

Fig.S10 TGA/DSC of (a) KTO/C-700 and (b) KTO/C-800 at a rate of 10 °C min⁻¹ in Air

Table S3 Nyquist Analysis of $K_2 Ti_6 O_{13}$, KTO/C-600, KTO/C-700 and KTO/C-800 anodes before cycling			
Sample	R _s (Ω)	R _{ct} (Ω)	
K ₂ Ti ₆ O ₁₃	2.90	16877	
KTO/C-600	2.68	9987	
KTO/C-700	2.13	3078	
KTO/C-800	3.79	8487	

Refer

[1] X. Ma, G. Ning, Y. Sun, Y. Pu and J. Gao, Carbon, 2014, 79, 310-320.

[2] X. Zhang, D. V. Raj, X. Zhou, Z. Liu, J. Power Sources, 2018, 382, 95-100.

[3] C. Liao and S. Wu. Chem, Eng. J., 2019, **355**, 805-814.

[4] D. Lin, Z. Lu, P.C. Hsu, H. R. Lee, N. Liu, J. Zhao, H. Wang, C. Liu and Y. Cui, Energy Environ. Sci., 2015, 8, 2371-2376.

[5] A. Jaiswal, C. R. Horne, A. Chang, W. Zhang, W. Kong, E. Wang, T. Chen and M. M. Doeff, *J. Electrochem. Soc.* 2009, 1**56**, A1041-A1046.

[6] S.I. Heo, K. S. Oh, J. C. Yun, S. H. Jung, Y. C. Yang and K. S. Han, J. Power Sources, 2007, 171, 396-403.

[7] I.V. Zolotukhin, I. M. Golev, A. E. Markova, S.N. Blinov, D. A. Grishin and E. G. Rakov, Tech. Phys. Lett., 2005, 31, 159-160.