Electronic Supplementary Information for

Real-time monitoring and accurate diagnosis of drug-induced hepatotoxicity *in vivo* by ratio fluorescent and photoacoustic

imagings of peroxynitrite

Hongjun Zhuang,^a Benhao Li,^a Mengyao Zhao,^a Peng Wei,^b Wei Yuan,^a Mengfan Zhang,^a Xuemin Han,^b Yi Chen^b and Tao Yi^{*ab}

^aDepartment of Chemistry, Fudan University, Shanghai 200438, P. R. China. ^bCollege of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P. R. China

Scheme S1. The preparations of P-cy7

Fig. S1 Energy transfer mechanism of UCP nanoparticles.

Fig. S2 TEM images of NaYF₄:20%Yb,2%Er,x%Tm: x = 0.2 (A), 0.5 (B) and 1.0 (C), and NaYF₄:20%Yb,2%Er,x%Tm@NaYF₄: x = 0.2 (D), 0.5 (E) and 1.0 (F), scale bars, 50 nm.

Fig. S3 Luminescence emission spectra of NaYF₄:20%Yb,2%Er,x%Tm (x = 0.2, 0.5% and 1%).

Fig. S4 Luminescence emission spectra of UCP and UCL.

Fig. S5 Zeta potentials of UCP, UCL and UCY7.

Fig. S6 Lifetime decay curves at 1525 nm of UCL, UCY7 and UCY7+ONOO⁻.

Fig. S7 (A) UV–vis absorption spectra of UCY7 (0.1 mM) in different pH Tris-HCl solutions.

Fig. S8 Emission spectra of P-cy7 (0.1 mM, Ex = 660 nm) and UCY7 (0.1 mM, Ex = 660 nm) in Tris-HCl (pH7.4) illuminated with corresponding laser at different power density.

Fig. S9 Relative viabilities of HepG2 cells after incubation with various concentrations of P-cy7 (A) and UCY7 (B) in the dark for 24 h. Date are presented as means \pm s.d. (n = 5).

Fig. S10 Confocal images of HepG2 cells treated with P-cy7 (A) and UCY7 (B) at different time points. Blue (Ex = 405 nm, Em = 460 ± 40 nm) and red (Ex = 633 nm, Em = 700 ± 50 nm) represent DAPI and P-cy7 / UCY7 fluorescence, respectively.

Fig. S11 (A) UV–vis absorption spectra and (B) the standard curves for P-cy7 solution detected at 624 nm (Y = 0.04915X + 0.00892).

Fig. S12 UCL:P-cy7 loading weight ratios and loading efficiency with different feeding weight ratios. UCL: 0.1 mM; P-cy7: $n \times 0.1$ mM (n=2, 4, 6, 8,10); The solution (P-cy7 solution and P-cy7 supernate) was diluted 20 times before the test.

Fig. S13 Emission spectra of UCL with different concentration of P-cy7. UCL: 0.1 mM; P-cy7: n×0.1 mM (n=0, 2, 4, 6, 8,10).

Fig. S14 (A) UV–vis absorption spectra of UCY7 (0.1 mM) and (B) the ratio of A/A_0 at 624 nm against the concentration of ONOO⁻

Fig. S15 (A) UV–vis absorption spectra and the ratio of A_{656}/A_{800} of UCY7 (0.1 mM) in the presence of different biological species. H_2O_2 : 200 μ M; \cdot OH: 200 μ M; $O_2^-:200 \mu$ M; NO: 200 μ M; ROO $\cdot:$ 200 μ M; t-BuOO $\cdot:$ 200 μ M; TBHP: 200 μ M; ONOO $\cdot:$ 50 μ M.

Fig. S16 Fluorescence emission spectra of UCY7 (0.1 mM) in the presence of different biological species. H_2O_2 : 200 μ M; ·OH: 200 μ M; O_2 : 200 μ M; NO: 200 μ M; ROO·: 200 μ M; t-BuOO·: 200 μ M; TBHP: 200 μ M; ONOO⁻: 50 μ M.

Fig. S17 (A) UV–vis absorption spectra and (B) the ratio of A/A₀ at 624 nm over time (0-30 min), UCY7: 0.1 mM, ONOO⁻: 50 μ M.

Fig. S18 Brightfield (A) and luminescence images (B, C) of UCL, UCY7 and UCY7+ONOO⁻ (Tube 1-3, respectively). Excitation: 980 nm (50 mW/cm²), exposure time: 10 ms, band pass filter 800±10 nm and 680±30 nm.

Fig. S19 *In vivo* toxicology study and serum biochemistry results obtained from balb/c mice in 12, 24, 48 h of intravenous injection with UCY7; (A) mean corpuscular hemoglobin (MCH), (B) mean corpuscular volume (MCV), (C) hematocrit (HCT), (D) hemoglobin (HGB), (E) mean corpuscular hemoglobin concentration (MCHC), (F) white blood cells (WBC), (G) red cell distribution width-coefficient of variation, (H) red blood cells (RBC), (I) Platelets (PLT) and (J) mean platelet volume (MPV).

Fig. S20 Representative histology of heart, spleen, lung and kidney of mice at 12 h and 48 h after intravenous nanoprobe.

Fig. S21 NIR-II FL bioimaging consequences for the abdomen (1200 nm long-pass filter) after intravenous injection with of UCY7 at different times under 980-nm excitation ($P = 0.5 \text{ W} \cdot \text{cm}^{-2}$).

Fig. S22 ¹H NMR (400 MHz, DMSO-d₆) δ (ppm): 6.28 (d, *J* = 8.3 Hz, 2H), 6.21 (d, *J* = 4.8 Hz, 2H), 6.13 (t, *J* = 5.0 Hz, 4H), 6.06 (d, *J* = 5.3 Hz, 2H), 6.02 (d, *J* = 9.5 Hz, 2H), 5.38 (d, *J* = 7.8 Hz, 2H), 4.36 (t, *J* = 5.2 Hz, 4H), 3.98 (s, 4H), 3.34 (s, 4H), 2.59 (d, *J* = 7.0 Hz, 4H), 2.49 (s, 4H), 1.78 (s, 8H), 1.67 -1.64 (m, 4H), 1.60 (s, 12H).

Fig. S23 ¹³C NMR (151 MHz, DMSO-d₆) δ(ppm): 175.0, 169.1, 143.2, 140.0, 137.5, 129.8, 129.7, 128.3, 128.1, 122.4, 122.2, 120.3, 115.6, 109.3, 94.5, 63.3, 51.2, 47.3, 41.7, 30.0, 28.9, 28.6, 25.7, 23.3, 22.9, 22.8, 14.3.

Fig. S24 ³¹P NMR(243 MHz, DMSO-d₆) δ(ppm): -7.51.

Fig. S25 Mass spectrum of probe P-cy7.