## **Supporting Information for:**

## 3D microstructure analysis of silicon-boron phosphide mixed nanocrystals

Keita Nomoto,<sup>a</sup> Hiroshi Sugimoto,<sup>b</sup> Anna V. Ceguerra,<sup>a</sup> Minoru Fujii,<sup>\*b</sup> and Simon P. Ringer<sup>\*a</sup>

a. Australian Centre for Microscopy & Microanalysis and School of Aerospace Mechanical and Mechatronic Engineering, The University of Sydney, 2006 Sydney, Australia.

b. Department of Electrical and Electronic Engineering, Kobe University, 657-8501 Kobe, Japan.

\* e-mail: simon.ringer@sydney.edu.au

\* e-mail: fujii@eedept.kobe-u.ac.jp



Fig. S1 TEM images and the Fourier transform of B<sub>x</sub>Si<sub>y</sub>P<sub>z</sub> NCs

## XPS spectra of B<sub>x</sub>Si<sub>y</sub>P<sub>z</sub> nanocrystals

For XPS measurements of the  $B_x Si_y P_z$  nanocrystals, the solutions were drop-cast on gold-coated stainless-steel plates and dense films of nanocrystals formed. XPS measurements were carried out using an Al K $\alpha$  X-ray source (ULVAC-PHI, PHI X-tool). The detection area was 1.4 mm x 0.1 mm. Therefore, signals from very large numbers of nanocrystals were analyzed and averaged.

Figure S2 provides the XPS spectra of B 1s (P 2s), Si 2p and P 2p peaks. XPS spectra exhibiting high signal-to-noise ratios were obtained. The atomic ratios of the B, P and Si were estimated from integrated intensities of the peaks by taking into account the ionization cross-sections of each element. Unfortunately, the XPS signal of B 1s is overlapped with that of P 2s. Therefore, we subtracted the contribution of the P 2s signal from the spectrum in Figure S2(a) by the following procedure. First, the intensity ratio of P 2s signal ( $I'_{P2s}$ ) to P 2p signal ( $I'_{P2p}$ ) of a standard phosphorous sample (red phosphorus) was measured ( $I'_{P2s}/I'_{P2p}$ ). The intensity of P 2s signal ( $I_{P2s}$ ) was then calculated by multiplying  $I'_{P2s}/I'_{P2p}$  to that of P 2p signal ( $I_{P2p}$ ) obtained from Figure

S2(c)  $(I_{P2s} = I_{P2p} \times (I'_{P2s}/I'_{P2p}))$ . Finally,  $I_{P2s}$  was subtracted from the integral intensity of the spectrum in Figure S2 (a) to obtain the B 1s signal intensity.



Fig. S2 (a) B1s (P 2s), (b) Si 2p and (c) P 2p XPS spectra of  $B_x Si_y P_z$  NCs grown at 1200 °C.



Fig. S3 Size distributions of B and P codoped Si NCs,  $B_x Si_y P_z NCs$ , and BP NCs obtained from APT 3D reconstructions.



Fig. S4 APT reconstructions of  $B_x Si_y P_z$  NCs. Iso-density surface of B, Si and P is 2 atoms/nm<sup>3</sup>, 14 atoms/nm<sup>3</sup>, and 2 atoms/nm<sup>3</sup> respectively.



Fig. S5 Si, O, P and B profiles for B and P codoped Si NCs,  $B_x Si_y P_z$  NCs, and BP NCs.



Fig. S6. APT reconstructions of individual  $B_x Si_y P_z$  NCs. The voxel size used here is 0.1 nm.



Fig. S7. APT reconstructions of  $B_x Si_y P_z$  NCs with different iso-density surfaces. (a) the same as Figure 3(b) in the main text, (b-d)  $B_x Si_y P_z$  NCs created by the iso-density surface values of 16 atoms/nm<sup>3</sup> (b), 13 atoms/nm<sup>3</sup> (c), and 18 atoms/nm<sup>3</sup>(d).



iso-density surface BSiP 13 atoms/nm<sup>3</sup>, 16 atoms/nm<sup>3</sup>, and 18 atoms/nm<sup>3</sup>

Fig. S8. Proxigram profiles of  $B_x Si_y P_z$  NCs created by the iso-density surface values of 16 atoms/nm<sup>3</sup>, 13 atoms/nm<sup>3</sup>, and 18 atoms/nm<sup>3</sup>.



Fig. S9. 2D concentration mapping of B and P atoms. (a)  $B_x Si_y P_z NCs + 2D B$  concentration map, (b) 2D B concentration map, and (c) 2D P concentration map.