Electronic Supplementary Information

Single molecule binding of a ligand to a G-protein-coupled receptor in real time using fluorescence correlation spectroscopy, rendered possible by nano-encapsulation in styrene maleic acid lipid particles

Rachael L. Grime,^a Joelle Goulding,^b Romez Uddin,^c Leigh A. Stoddart,^b Stephen J. Hill,^b David R. Poyner,^c Stephen J. Briddon^b and Mark Wheatley^{*d}

^a School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK

^b Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, NG7 2UH, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK

^c Life and Health Sciences, Aston University, Birmingham B4 7ET, UK

^d Centre for Sport, Exercise and Life Sciences, Faculty of Health and Life Sciences, Alison Gingell Building, Coventry University, Coventry, CV1 2DS, UK; Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, UK

* Corresponding author, e-mail: mark.wheatley@coventry.ac.uk

SUPPORTING EXPERIMENTAL

SDS-PAGE analysis of purified A_{2A}R-SMALP

Purified $A_{2A}R$ -SMALP was analysed by SDS-PAGE using 12% (w/v) acrylamide gels run at 160 V for 60 min at room temperature. Resolved protein bands were visualised using Coomassie Brilliant Blue.

Cell culture

Chinese hamster ovary (CHO) cells stably expressing a cAMP response element-secreted placental alkaline phosphatase (CRE-SPAP) reporter gene expressing the human $A_{2A}R$ were produced as previously described¹ and were maintained in Dulbecco's Modified Eagle Medium:Nutrient Mixture F-12 (DMEM/F12) medium containing 10% FCS and 2 mM L-glutamine at 37 °C in humidified atmosphere of air/CO₂ (19:1).

CRE-SPAP gene transcription assay

 $A_{2A}R$ CRE-SPAP cells were grown to confluence in clear 96-well plates. On the day prior to analysis, normal growth medium was removed and replaced with serum-free medium (SFM; DMEM/F12 supplemented with 2 mM L-glutamine). On the day of the experiment, fresh SFM was added to the cells with or without the required concentration of CA200645 and incubated for 30 min at 37 °C. After 30 min, increasing concentrations of NECA were added and cells were then incubated for 5 h at 37 °C. After the 5 h incubation, all medium was removed from the cells, replaced with 40 µL of SFM and incubated for a further 1 h. The plates were then incubated at 65 °C for 30 min to inactivate the endogenous alkaline phosphatases. After cooling the plates to room temperature, 5 mM 4-nitrophenyl phosphate in a diethanolamine-containing buffer (10% (v/v) diethanolamine, 280 mM NaCl, 500 µM MgCl₂, pH 9.85) was added to each well. Plates were incubated for 10 min at 37 °C and then the absorbance at 405 nm was measured using a Dynex MRX plate reader (Chelmsford, MA).

Data analysis

All data were fitted using Prism 7 (GraphPad Software). NECA concentration-response curves in the absence and presence of a range of concentrations CA200645 were globally fitted to the following interaction model.

Response =
$$\frac{E_{max} \times [A]}{([A] + EC_{50} \times (1 + \frac{[B]}{K_{D}})^{S})}$$

 E_{max} is the maximal response to NECA, EC_{50} is the molar concentration of NECA [A] that gives half maximal response in the absence of test compound, [B] is the concentration of test compound, K_D is the antagonist equilibrium dissociation constant and S is the Schild slope.

SUPPORTING DATA

Fig. S1 Purified $A_{2A}R$ -SMALP. A sample of $A_{2A}R$ -SMALP purified by Ni²⁺-NTA resin was analysed by SDS-PAGE using 12% (w/v) acrylamide gel, then visualised by staining with Coomassie Brilliant Blue. Right-hand lane, purified $A_{2A}R$ -SMALP; left-hand lane, molecular weight markers.

Fig. S2 CA200645 binds to the $A_{2A}R$. The concentration-response curve for the agonist NECA was determined in the presence of different concentrations of CA200645 as indicated, producing a parallel rightward shift in the curve. These data indicate that the competitive antagonist CA200645 binds to the $A_{2A}R$.² The NECA pEC₅₀ = 7.91 ± 0.16 and the pA₂ value for CA200645 = 7.37 ± 0.17 (n = 6). The pA2 is the negative logarithm of the K_D of the antagonist. Data shown are the combined data from six independent experiments.

Fig. S3 FCS of $A_{2A}R$ -SMALP alone. $A_{2A}R$ -SMALPs were analysed by FCS in the absence of CA200645. Upper panel, background count rate showing an absence of autofluorescence; Lower panel, data did not autocorrelate to any observable diffusion model.

SUPPORTING REFERENCES

- 1 L. A. Stoddart, A. J. Vernall, S. J. Briddon, B. Kellam and S. J. Hill, *Neuropharmacology*, 2015, **98**, 68-77.
- 2 H. O. Schild, *Br J Pharmacol Chemother*, 1947, **2**, 189-206.