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Supplementary Figures
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Fig. S1. (a) Schematic diagram of the closed-loop NaCl crystallization; (b) microscopy image of
NaCl crystals grown at room temperature.



Fig. S2. SEM images of (a,b) CGN and (c) pre-CGN.



Fig. S3. (a,b) SEM and (c) TEM images of GNS
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Fig. S4. AFM image of GNS with the corresponding height profile along the white path.



Fig. S5 SEM images of (a,b) NaCl-1, (c,d) NaCl-4, (e,f)NaCl-8 and (g,h) NaCl-16.

Fig. S5 shows the SEM iamges of NaCl scaffolds when NaCl solution was
treated with liquid nitrogen without the addition of F127 and rhodanine. (1) With the
increasing amount of NaCl, the particle size becomes larger and these particles tend to
agglomerate with each other. (2) Without the addition of F127 and rhodanine, the
collision of nanocrystals is strong to form nanocrystal agglomeration with large size

even at a low amount of NaCl.






Fig. S7. SEM images of RC.



Fig. S8. SEM images of FC.

The salt crystals size of pre-RC (Fig. S6a,b) is much larger than that of pre-FC
(Fig. Séc,d). It is because of the strong interactions between inorganic crystals and
F127. During drying, F127 would be adsorbed on the surface of NaCl crystals to
hinder the growth of NaCl nanocrystals.! Furthermore, F127 can better coat the NaCl
crystals than rhodanine. So the morphology of FC (Fig. S8) is more uniform than that
of RC (Fig. S7), and the thickness of FC is lower.
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Fig. S9. (a) nitrogen adsorption/desorption isotherms of HCS, CGN and GNS; (b) XPS survey
spectrum of CGN.
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Fig. S10. (a) Long-term cyclic performance of CGN at 0.2 A g'!; (b) voltage profiles of CGN from
Istto 1200th cycleat 1 A g,

As shown in Fig. S10a, the reversible specific capacity of CGN maintains 1180
mAh g at 200 mA g! after 400 cycles.
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Fig. S11. (a) Nyquist plots of CGN electrode (a) in the 2nd discharge process and (b) after 360
cycles in LIBs; (c) nyquist plots of CGN electrode before and after cycling in SIBs; (d) randles

equivalent circuit for the CGN electrodes.
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Fig. S12. CV curves of CGN and GNS electrodes at (a) 0.1 and (b) 2 mV s!
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Fig. S13. GITT curves of CGN and GNS electrodes.
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Fig. S14. Long-term cyclic performance of GNS at 1 A g! as SIB anode materials.
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Fig. S15. (a) CV curves of CGN from 0.1 to 5 mV s°!; (b-¢) Diffusion contribution ratio of CGN

in SIBs at different scan rates



Supplementary Tables

Table S1. Specific surface areas the products calculated by DFT method

Sample Sger (m* g7) Smic (m* g) Smes (m? g)
HCS 442 .4 143.4 299.0
CGN 576.8 244.6 3323
GNS 471.8 106.5 365.2

Sger: BET surface area. S t-Plot micropore area. S,,s: t-Plot mesopore area.



Calculation of diffusion-controlled and capacitive contribution:
The diffusion-controlled process in CGN and GNS electrodes can be studied by

the power law relationship between current i and scan rate v:>4

b

J

i=av

where { is the current, V is the scan rate, and a and b are adjustable parameters. A b-

value of 0.5 represents a fully diffusion-controlled process and a b-value of 1.0
indicates a capacitive process.

The contribution of these two processes can be separated quantitatively by the

following equation:

2

i(v) =kv+k,v

1/2

kpv represents

In this equation, feyv represent the capacitive contribution, and

the diffusion-controlled contribution.

And this equation can be rearranged to the equation as follows for easy analysis.

1/2
/1 =kov “+k
i(v)v/2 ! ?

CTCN

Then k; and k, can be determined by fitting a straight line of {(¥) V" " vs. V" “ in

which £ is the slope and k; is the y-intercept.



Calculation of diffusion-contributed capacity and adsorption-contributed

capacity:

Trasatti method is used to evaluate the total capacity, diffusion-contributed capacity

and adsorption-contributed capacity:>-©

_1000S
" 3.6vAUm

where € (mAh g') is the gravimetric capacity, S (mA V) is the quantitative CV
integral area of cathode scan, V (mV s) is the scan rate, AU (V) is the voltage

window, and M (mg) is the mass of active materials on a single electrode.
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