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Fig. S1. Raman spectra of Ti3C2(HNO3-RT) and Ti3C2@TiO2(HNO3-RT) hybrids.
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Fig. S2. N2 adsorption/desorption isotherms of Ti3C2(HNO3-RT) (a) and 
Ti3C2@TiO2(HNO3-RT) (b), respectively. The inserts images are the corresponding 
pore size distributions.
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Fig. S3. SEM images of (a, b) Ti3SiC2, (c-d) Ti3C2(H2O2-40).



5

Fig. S4. SEM images of (a, b) Ti3C2(H2O2-70), (c) Ti3C2 (HNO3-40) and (d) Ti3C2 
(AR-RT).
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Fig. S5. XRD patterns of Ti3C2(HNO3-40) and Ti3C2 (AR-RT).
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Fig. S6. (a) XPS survey scan of Ti3C2(HNO3-RT), and high-resolution XPS spectra of 
(b) Ti 2p, (c) O 1s and (d) C 1s.
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Fig. S7. Schematic diagram for the N doping process.
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Fig. S8. Cyclic voltammogram of the Ti3C2(HNO3-RT) (a) and Ti3C2@TiO2(H2O2-60) 
(c) electrodes in the initial 3 cycles at a rate of 0.1 mV s-1; Charge/discharge curves of 
the Ti3C2(HNO3-RT) (b) and Ti3C2@TiO2(H2O2-60) (d) electrodes at different cycles, 
respectively.
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Fig. S9. Discharge capacity of N-doped Ti3C2@TiO2(HNO3-RT) electrodes at 500 
mA g-1.
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Fig. S10. Rate capability of the Ti3C2 and Ti3C2@TiO2 electrodes (H2O2 as oxidant), 
respectively.

Compared with the rate capabilities of Ti3C2(H2O2-40) and Ti3C2(H2O2-60) 

electrodes, the rate capacity of Ti3C2@TiO2(H2O2-60) is higher and the discharge 

specific capacities are 195, 166, 129, 98, 80, 69 and 56 mA h g-1 at 100, 200, 500, 

1000, 1500, 2000 and 3000 mA g-1, respectively.
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Fig. S11. The coulombic efficiency of N-doped Ti3C2@TiO2(HNO3-RT) electrode at 
2000 mA g-1.
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Fig. S12. Comparisons in the rate capabilities between this work and other Ti3C2-
based electrodes.
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Fig. S13. CV profiles with shaded portion showing the capacitive contribution at 0.1, 
0.3, 0.5, 0.7 and 1 mV s−1.
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Table S1 Different preparation conditions and labeling of Ti3C2 and Ti3C2@TiO2, 

respectively.

MAX Etchant T (oC) Time (h) Hydrothermal Product record

Ti3SiC2 HF 40 48 No Ti3SiC2(HF-40)

Ti3SiC2 H2O2+HF 40 48 No Ti3C2(H2O2-40)

Ti3SiC2 H2O2+HF 60 48 No Ti3C2(H2O2-60)

Ti3SiC2 H2O2+HF 70 48 No Ti3C2(H2O2-70)

Ti3SiC2 H2O2+HF 60 48 Yes Ti3C2@TiO2(H2O2-60)

Ti3SiC2 HNO3+HF Room 
temperature

40 No Ti3C2(HNO3-RT)

Ti3SiC2 HNO3+HF 40 40 No Ti3C2(HNO3-40)

Ti3SiC2 HNO3+HF Room 
temperature

40 Yes Ti3C2@TiO2(HNO3-RT)

Ti3SiC2 AR+HF Room 
temperature

40 No Ti3C2(AR-RT)
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Table S2 Summary of the electrochemical performances of Ti3C2-based electrodes at 

various current densities in LIBs.

Electrode material Current density 
(mA g-1)

Cycle number 
(n) 

Capacity 
(mA h g-1)

Ref.

MXene nanosheets 1000 500 139 1

Ti3C2 200 500 203 2

Ti3C2@TiO2 200 500 267 2

Pure Mo2TiC2Tx 100 100 52 6

Ti3C2 film 1000 1000 70 7

Flash-air oxidized Ti3C2Tx 320 300 155 8

SnO2/MXene 100 50 258 9

SHS-Ti3C2 1C 100 53 10

PLS-Ti3C2 1C 100 87 10

Ti3C2 100 100 108 11

CoO@Ti3C2 100 100 324 11

Ti3C2 125 1000 135 12

Ti3C2 100 100 125 13

Ti3C2 100 50 91 14

Ti3C2 100 200 82 15

Ti3C2@TiO2(H2O2-60) 2000 1500 106 This 
work

Ti3C2(HNO3-RT) 200 250 201 This 
work

Ti3C2@TiO2(HNO3-RT) 200 250 339 This 
work

Ti3C2@TiO2(HNO3-RT) 500 250 246 This 
work

Ti3C2@TiO2(HNO3-RT) 2000 1500 154 This 
work
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