Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2020

Supporting Information

Hierarchical Ti;C,@TiO, MXene Hybrids with Controllable

Interlayer Distance for High Durable Lithium-ion Batteries
Li Li,**¢ Gaoxue Jiang,* Cuihua An,*>¢ Zhengjun Xie,* Yijing Wang,*° Lifang Jiao,°
Huatang Yuan,®
aSchool of Materials Science and Engineering, University of Jinan, Jinan 250022,
Shandong, China
bTianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New
Energy Materials & Low-Carbon Technologies, School of Materials Science and
Engineering, Tianjin University of Technology, Tianjin 300384, China
°Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education),
College of Chemistry, Nankai University, Tianjin 300071, China

* E-mail addresses: mse_lil@ujn.edu.cn (L. Li), wangyj@nankai.edu.cn (Y. Wang)


mailto:mse_lil@ujn.edu.cn

—Ti,C,@TiO,(HNO,-RT)

—Ti,C(HNO,-RT)

Intensity (a.u.)

200 400 600 800 1000 1200 1400 1600
Raman shift (cm™)

Fig. S1. Raman spectra of Ti3C,(HNO3-RT) and Ti;C,@TiO,(HNO3-RT) hybrids.
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Fig. S2. N, adsorption/desorption isotherms of Ti;C,(HNOs-RT) (a) and
Ti;C,@Ti0,(HNO;-RT) (b), respectively. The inserts images are the corresponding
pore size distributions.



Fig. S3. SEM images of (a, b) Ti3SiC,, (c-d) Ti3C,(H,0,-40).



Fig. S4. SEM images of (a, b) Ti;C,(H,0,-70), (¢) Ti3C, (HNO5-40) and (d) Ti;C,
(AR-RT).
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Fig. S5. XRD patterns of TizC,(HNO;-40) and Ti3C, (AR-RT).
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Fig. S6. (a) XPS survey scan of Ti3C,(HNO;-RT), and high-resolution XPS spectra of

(b) Ti2p, (c) O Isand (d) C 1s.



Fig. S7. Schematic diagram for the N doping process.
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Fig. S8. Cyclic voltammogram of the Ti3C,(HNO;-RT) (a) and Ti;C,@Ti0,(H,0,-60)
(c) electrodes in the initial 3 cycles at a rate of 0.1 mV s°!; Charge/discharge curves of
the Ti3C,(HNO3-RT) (b) and Ti;C,@Ti10,(H,0,-60) (d) electrodes at different cycles,
respectively.
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Fig. S9. Discharge capacity of N-doped Ti;C,@TiO,(HNOs-RT) electrodes at 500
mA gl
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Fig. S10. Rate capability of the Ti;C, and Ti;C,@TiO, electrodes (H,0O, as oxidant),
respectively.

Compared with the rate capabilities of Ti;C,(H,0,-40) and TizC,(H,0,-60)
electrodes, the rate capacity of Ti;C,@Ti0,(H,0,-60) is higher and the discharge
specific capacities are 195, 166, 129, 98, 80, 69 and 56 mA h g! at 100, 200, 500,

1000, 1500, 2000 and 3000 mA g, respectively.
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Fig. S11. The coulombic efficiency of N-doped Ti;C,@Ti10,(HNO3-RT) electrode at
2000 mA gl
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Fig. S12. Comparisons in the rate capabilities between this work and other Ti;C,-
based electrodes.
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Fig. S13. CV profiles with shaded portion showing the capacitive contribution at 0.1,

0.3, 0.5, 0.7 and 1 mV sl
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Table S1 Different preparation conditions and labeling of Ti3C, and Ti;C,@TiO,,

respectively.
MAX Etchant T (°C) Time (h) Hydrothermal Product record
Ti3SiC, HF 40 48 No Ti53SiC,(HF-40)
Ti3SiC, H,0,+HF 40 48 No Ti3C,(H,0,-40)
Ti3SiC, H,0,+HF 60 48 No Ti3C,(H,0,-60)
Ti5S1C, H,O0,+HF 70 48 No Ti3C,(H,0,-70)
Ti5S1C, H,O0,+HF 60 48 Yes Ti;C,@Ti0,(H,0,-60)
Ti3SiC, HNOs;+HF  Room 40 No Ti;C,(HNO3-RT)
temperature
Ti3SiC, HNO;+HF 40 40 No Ti3C2(HNO5-40)
Ti53SiC, HNO;+HF  Room 40 Yes Ti;C,@TiO,(HNO;-RT)
temperature
Ti3S1C, AR+HF Room 40 No Ti3C,(AR-RT)

temperature
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Table S2 Summary of the electrochemical performances of Ti;C,-based electrodes at

various current densities in LIBs.

Electrode material Current density Cycle number Capacity Ref.
(mA g™) (n) (mA h g)
MXene nanosheets 1000 500 139 1
Ti5C, 200 500 203 2
Ti;C,@TiO, 200 500 267 2
Pure Mo,TiC,Tx 100 100 52 6
Ti53C; film 1000 1000 70 7
Flash-air oxidized Ti;C,Ty 320 300 155 8
SnO,/MXene 100 50 258 9
SHS-Ti;C, 1C 100 53 10
PLS-Ti;C, 1C 100 87 10
Ti5C, 100 100 108 11
CoO@Ti;C, 100 100 324 11
Ti5C, 125 1000 135 12
Ti5C, 100 100 125 13
Ti5C, 100 50 91 14
Ti5C, 100 200 82 15
Ti;C,@TiO,(H,0,-60) 2000 1500 106 This
work
Ti3C,(HNO;5-RT) 200 250 201 This
work
Ti;C,@TiO,(HNO3s-RT) 200 250 339 This
work
Ti;C,@TiO,(HNO3s-RT) 500 250 246 This
work
Ti;C,@TiO,(HNO3-RT) 2000 1500 154 This

work
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