Supporting Information for

Effective accommodation and conversion of polysulfide using organic-inorganic

hybrid frameworks for long-life lithium-sulfur battery

Sa Jiao, Tianyi Ding, Rui Zhai, Yunping Wu, Sheng Chen, and Wei Wei*

Department of Applied Chemistry, School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Materials, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, P R China.

*E-mail: wwei.mc@mail.xjtu.edu.cn

Figure S1. (a) SEM and (b) TEM images of Co₃O₄@G-S; (c) SEM and (d) TEM images of G-S; (e) SEM and (f) TEM images of RCE@G-S.

Figure S2. (a) SEM and (b-d) EDX mapping images for C, O, S elements of RCE@G-S composite.

Figure S3. (a) XRD pattern, (b) TEM and (c) HRTEM images of Co₃O₄ NCs.

Figure S4. EDX mapping for (a) SEM image, (b) C, (c) O, (d) Co, and (e) S of Co₃O₄@G-S composite.

Figure S5. TGA of the RCE-Co₃O₄@G-S (a), Co₃O₄@G-S (b), RCE@G-S (c).

Among the range of 35-500 °C in N₂ atmosphere, both S and CE underwent thermal decomposition with weight loss. Accordingly, we needed to exclude the influence of CE by replacing the sulfur of RCE-Co₃O₄@G-S with same amount of Super P Li for TGA measurement. Therefore, by calculating the difference (subtraction) between the thermal decomposition loss of RCE-Co₃O₄@G-S and RCE-Co₃O₄@G-Super P Li, the sulfur content in RCE-Co₃O₄@G-S could be obtained (71.63%). The sulfur content in RCE@G-S was calculated by the same method (81.63%).

Figure S6. (a) XRD patterns of RCE@G-S and G-S composites; (b) XRD patterns of RCE- $Co_3O_4@G$ matrix and pristine sulfur. For RCE- $Co_3O_4@G$, the diffraction peaks from graphene and Co_3O_4 are marked in black and blue color respectively.

Figure S7. Raman spectra of RCE@G-S and G-S composites.

Figure S8. N₂ adsorption-desorption isotherms and pore size distribution (inset) of RCE@G (a) and G (b) respectively.

Table S1. RCE-Co₃O₄@G-S surface element content based on XPS.

Element	C1s	O1s	Co2p	S2p	N1s
Atom %	75.48	18.65	1.07	2.37	2.48

Figure S9. Cycling performance of RCE-Co₃O₄@G-S with sulfur loading of 1.6 mg cm⁻².

Figure S10. (a, b) STEM image and corresponding elemental mapping images of RCE-Co₃O₄@G-S cathode after 100 cycles. (c, d) HR-TEM images of incorporated Co₃O₄.

Figure S11. High-resolution Co 2p_{3/2} XPS spectra of RCE-Co₃O₄@G-S cathode after 100 cycles.

Figure S12. Visual illustration on LiPS confinement effect in cells using RCE@G-S, Co₃O₄@G-S, and RCE-Co₃O₄@G-S cathodes respectively.