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S1. Wedge fabrication, transfer, fastening, and substrate inspection procedure 

 

During the formation of a nanowire (NW) arch, contact between the NW 

and the wedge should occur at a single point to permit simple modelling 

of the NW’s deflected state. Ideal wedge dimensions are determined by 

considered the geometry of the NW population being tested, which, as 

presented in Table S4 (ESI S7), have lengths and second moment of 

areas ranging from 44 89 μm− and 29 4286.9 1.64 10  m−−  , 

respectively. The height of the wedge dictates how much the NWs 

deflect, and for this NW population, should remain within the 1-3 µm 

range. A NW arch with a maximum deflection below 1 µm would exhibit 

an insufficient number of fringes. A NW arch with a maximum 

deflection above 3 µm would exhibit fringes that cannot be entirely 

observed within the focal range of utilised objective lens of the optical 

microscope (OM) (see ‘Experimental details’ in the main manuscript), 

and hence would require micrographs to be taken at different focal 

heights. The NW arches would also have a large suspended length, 

requiring NW samples that are long enough to ensure that both ends 

remain adhered to the substrate. The slope of deflection of small 

diameter NWs may also become so large that the small-angle 

approximation being used in the Euler-Bernoulli beam models becomes 

invalid 1.  

Wedge fabrication, transfer, and fastening were carried out by 

combining focused ion beam (FIB) milling, in situ SEM 

nanomanipulation, and electron beam induced deposition (EBiD) of Pt 

inside a Scios DualBeam FIB facility (FEI, USA) as per the schematic 

provided in Fig. S1. Scanning electron microscope (SEM) images of the 

fabricated wedge are provided in Fig. S2. Commercial carbon fibre 

segments with a diameter of 7 μm  were deposited onto the surface of a 

‘preparatory’ Si substrate, as shown in Fig. S2a. The carbon fibre was 

then FIB milled into a symmetric wedge shape using a 0.5 15 nA− and 

20 kV  ion beam current range and acceleration voltage, respectively 

(Fig. S1a-c). It was crucial that the region of the substrate surface for 

which adhesion testing was conducted was not modified by the FIB. The 

milled carbon fibre was therefore Pt fastened to a W probe and 

transferred to a ‘pristine’ Si substrate (Fig. S1d and e). FIB milling was 

used to cut-free the modified carbon fibre from the W probe. It was 

ensured that the FIB’s field of view remained outside of the region of 

the substrate reserved for NW arch placement and testing (Fig. S1f). The 

FIB damaged region of the surface was therefore restricted to only one 

end of the modified carbon fibre (Fig. S1g). The modified carbon fibre 

was then fastened at each end to the substrate using Pt deposition to 

ensure the wedge structure was unmoveable during the formation and 

removal of NW arches (Fig. S1h).  A top down view of the final fastened 

wedge structure is shown in Fig. S2b.  

After removal from the SEM the substrate was heated to 400 C

in atmosphere in order to vaporise EBiD carbon from its surface. The 

condition of the substrate surface within the vicinity of the wedge was 

then investigated using optical microscopy, as shown in Fig. S2c. 

Substrate regions are demarcated from i to iv. The FIB damaged region 

(i) is clearly distinguishable from the pristine test region (ii). Pt residue 

immediately surrounding each end of the wedge (iii), and the FIB-milled 

trench (iv) is also evident. These observations were used as a reference 

to ensure that all NW arches were formed entirely within the pristine test 

region. 

 

Fig. S1 Fabrication procedure of the wedge structure. (a) Deposition of a carbon 

fibre onto a ‘preparatory’ substrate, followed by FIB-milling of the (b) left and (c) 

right sides to form a symmetric triangular-shaped wedge. (d) EBiD of Pt was used 

to fasten the carbon fibre to the W probe; facilitating its transfer from the 

preparatory substrate to a (e) ‘pristine’ substrate. (f) FIB-cutting of the carbon 

fibre to detach it from the W probe, (g) ensuring that FIB-damage was restricted 

to a region adjacent to the carbon fibre. (h) Fastening of the carbon fibre to the 

substrate using Pt deposition. 

 

Fig. S2 (a) Unmodified carbon fibre. (b) FIB-milled wedge structure. (c) Optical 

micrograph of the area of the substrate surrounding the wedge. Substrate regions 

are demarcated i-iv. (i) FIB-damaged region, (ii) pristine test region, (iii) platinum 

residue, (iv) FIB-milled trench. 
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S2. Non-ideal geometry of a nanowire 

A NW with a regular hexagonal cross-section (see Fig. 3a in the main 

manuscript) has six facets with equal facet-length, 
avga , which can be 

defined in terms of t or w by the following geometric relations; 

( 3 / 3) / 2avga t w= = . A NW with an irregular hexagonal cross-section 

is assumed to be symmetric about its y and z axis, and to maintain 120  

internal angles (see Fig. 3b in the main manuscript). The top and bottom 

facet therefore have a different length to the four side facets. The 

top/bottom facets have an equal major facet-length, 
1a , and the side 

facets have an equal minor facet-length, 
2a . Derivation of the major and 

minor facet lengths require both t and w by the following geometric 

relations; 
1 ( 3 / 3)a w t= − , and 

2 ( 3 / 3)a t= , respectively. The 

second moment of area of a NW with a regular and irregular cross-

section, 
regI  and 

irrI , can then be defined as per eqn (S3) and (S4) 

(Table S1), respectively. 

It is useful to examine the properties of NWs as a function of a 

size parameter, especially as NWs are commonly found to exhibit size-

effects. 2-4 This requires the definition of a NW’s size. As ‘size’ is an 

arbitrary property, it is important to select a definition that relates to a 

physical property associated with size-effects. Size-effects observed in 

NWs have commonly been associated with a relative increase in the 

NW’s surface area, where surface stiffening 2, 3 and surface defects 4 can 

occur. In this study, we express the size of a NW with a regular 

hexagonal cross-section by an effective diameter parameter, 
,e regD , 

equivalent to two times its facet-length. We also define an effective 

diameter for an irregular hexagonal NW, 
,e irrD , by specifying that it 

must have an equivalent volume to surface ratio per unit length to a 

regular hexagonal NW of the same effective diameter. To derive this 

expression, we first determine the volume, 
regV  and 

irrV , and surface 

area, 
regSA  and 

irrSA ,  of NWs with regular and irregular hexagonal 

cross-sections,  in terms of their facet-lengths, 
avga , 

1a , 
2a , as well as 

their length, L , as per eqn (S5), (S6), (S7), and (S8) (Table S1), 

respectively. Note that the end surfaces of a NW are not considered. The 

volume-to-surface ratios for regular and irregular NWs, ( )/
reg

V SA  and 

( )/
irr

V SA , can then be defined as per eqn (S9) and (S10) (Table S1), 

respectively. This allows
,e irrD to be expressed in terms of the major and 

minor facet-lengths as per eqn (8) in the main manuscript.  

The irregularity of a NW’s cross-section can be expressed using 

an irregularity ratio, 
1 2/Z a a= , where, for simplicity, we considered it 

to remain constant over the axial length of a NW.  Additionally, the 

degree to which a NW is tapered is determined by evaluating the 

geometry of its cross-section at each of its ends, as per the schematic in 

Fig. S3a. Note, we consider that tapering occurs linearly over its length. 

The non-ideal geometry of a tapered and irregular NW can therefore by 

fully defined by considering just three dimensional parameters; 

irregularity ratio, degree of tapering, and major facet-length, 
1a , 

calculated at the wedge contact-point. The irregularity ratio of a NW is 

taken as the average of the facet-length values obtained from both its 

ends. The degree of tapering can be defined by: 

1, 1,1 right left

left right

a ada

dx L L

 −
=  
 + 

 (S1) 

where dx  is an increment of the NW’s length, 
1,lefta  and 

1,righta are the 

major facet-lengths measured at locations at the left and right ends of the 

NW, defined by their distances of 
leftL  and 

rightL  from the wedge 

contact-point, respectively. The major facet-length value at the wedge 

contact-point can then be determined and used as a reference: 

1
1, 1,wedge left left

da
a a L

dx

 
= +  

 
 (S2) 

High-resolution SEM and AFM micrographs obtained at 

approximately the same location at one end of a typical NW arch 

(NWA3) are presented in Fig. S3b and c, respectively. The faceted 

surface of the NW is clearly observable in the SEM micrograph. An 

AFM line-profile (LP) of the cross-section of the NW is presented in 

Fig. 3d; located as demarcated by the dotted line in the AFM micrograph. 

The overlayed hexagon defines the theoretical irregular cross-section of 

the NW, deduced from the t and w measurements. The geometric 

parameters for all 11 tested NWs are listed in Table S4 (ESI S7). Note, 

parameter values determined at the wedge contact-point are notated with 

the subscript ‘wedge’. The irregularity ratio and degree of tapering for 

all tested NWs are plotted with respect to their equivalent effective 

diameter in Fig. S4a and b, respectively. 

 

Fig. S3 (a) Schematic of the tapered geometry of a NW, showing the locations of 

AFM and SEM examination, and how their distances from the wedge contact-point 

are defined. (b) SEM, and (c) AFM micrographs showing the faceted surface of a 

typical NW (NWA3), used for measuring its thickness and width, respectively. (d) 

AFM line-profile of the NW’s cross-section, located as demarcated by the dotted 

line in the AFM micrograph. The overlayed hexagon provides the theoretical 

cross-section of the NW, deduced from the width and height measurements. 
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Table S1. Equations for the second moment of area, volume, surface area, and volume-to-surface ratio of NWs with regular and irregular hexagonal cross-sections. 

 Regular cross-section Irregular cross-section 

Second moment of 

area 4(m )  
45 3

16
reg avgI a=  (S3) ( )3

1 1 2

3
4

16
irrI a a a= +  (S4) 

volume, 3 (m )V   
2(3 3 / 2)reg avgV a L=  (S5) 1 2 2( 3 / 2)(2 )irrV a a a L= +  (S6) 

surface area, 2 (m )SA   6reg avgSA a L=  (S7) 1 23( )irrSA a a L= +  (S8) 

volume-to-surface 

ratio, /  (m)V SA   

3

4
avg

reg

V
a

SA

 
= 

 
 (S9) 

( )

( )
2 1 2

1 2

2

2 3irr

a a aV

SA a a

+ 
= 

+ 
 (S10) 

 

 

Fig. S4 (a) Irregularity ratio of the cross-section, and (b) degree of tapering for all tested NWs, plotted with respect to their equivalent effective diameter. 

S3. Nanowire arch deflection formulae 

‘Half-arch’ model 

The generalised internal moment distribution of a clamped-clamped 

unloaded beam as described by the ‘half-arch’ model, can be determined 

by considering the free body diagram presented in Fig. 3c of the main 

manuscript. Considering the left side of a NW arch; at the location of the 

crack front, designated point A, ( )0,  =0, / 0x d dx = = , and an 

external moment, 
aM , and vertical reaction, 

,v aF  , are applied. Note 

that the origin of x  is always taken from point A. At the location where 

the NW contacts the wedge, designated point B, 

( ),  =h, / 0x s d dx = = , and 
bM  as well as

,v bF , are applied. The 

general solution for the internal moment distribution in the beam can 

then be defined as ,i v a aM F M= − . Double integration of the moment-

curvature relationship 5 using the above stated boundary conditions 

yields a unique solution for deflection along half of the suspended length 

of a NW arch, as per eqn (1) in Table 1 of the main manuscript. 

Parameters, h  and s , obtained from fitting the deflection equation to 

the co-ordinates obtained for the left and right sides of a NW arch (Table 

S5 and S6) are provided in Table S7 (ESI S7). Coefficients of regression 

are also provided to assess the goodness of fit. 

‘Full-arch’ model 

The generalised internal moment distribution of the clamped-clamped 

beam with arbitrary point-load, as described by the ‘full-arch’ model, 

can be determined by considering the free body diagram presented in 

Fig. 3d of the main manuscript. Again, at point A, 

( )0,  =0, / 0x d dx = = , and 
aM as well as 

,v aF  , are applied. 

Considering the right side of the NW arch; at the location of the crack 

front, designated point C, ( )1 2 1 1,  =0, / 0x L L d dx = + = , and bM  as 

well as ,v bF , are applied. At the location where the NW contacts the 

wedge, designated point B, 
1x L= , 

1 2= =hw  , ( ) ( )1 2/ /d dx d dx = , 

and P  is applied. The general solution for the internal moment 

distribution in the left segment of the beam is the same as for the half-

arch model, and the right segment is defined by

( )2 , 1i v a aM F M x PL M= − − − . The unique solution for deflection along 

the suspended length of a NW arch can then be determined for both the 

left and right sides; see eqn (3) and (4) in Table 1 of the main manuscript. 

For a tapered NW, the major facet-length can be expressed as a 

function of x : 
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( ) 1
1 1, ( )wedge wedge

da
a x a x x

dx
= + −  (S11) 

where 
1,wedgea  is the major facet-length at the wedge contact-point, 

1 /da dx  is the degree of tapering (see eqn (S2) and (S1)), and 
wedgex  is 

the x co-ordinate of the wedge contact-point where point A is the 

reference. A tapered NW’s cross-sectional area can then be expressed in 

terms of the major facet-length function. Note that 
2a  tapers 

proportionally to
1a , and so can be alternatively expressed using the 

irregularity ratio, giving: 

( ) ( ) ( )
4 1

, 1

3
4

16
irr taperI x a x Z −= +    (S12) 

Substituting eqn (S11)  into eqn (S12) allows the NW’s second moment 

of area to be expressed as a function of x : 

( ) ( ) ( )
4

1 1
, 1,

3
4

16
irr taper wedge wedge

da
I x Z a x x

dx

−  
= + + − 

 
 (S13) 

Replacing 
irrI  with 

,irr taperI  in the flexural formula yields updated 

deflection equations for the full-arch model, defined by eqn (4) and (5) 

in Table 1 of the main manuscript. Parameters, 
wh , 

1L , 
2L , and

wedgex  

obtained from fitting both the ideal and tapered deflection equations to 

the co-ordinates obtained for the left and right sides of a NW arch (Table 

S5 and S6) are provided in Table S8 (ESI S7). Coefficients of regression 

are also provided to assess the goodness of fit.

 

S4. Interfacial adhesion formulae 

Non-tapered nanowire – ‘half-arch’ and ‘full-arch’ models

Internal moment distribution 

Employing the half-arch model, the internal moment distribution within 

a non-tapered NW arch is defined by: 

,

3 2

12 6i H BM h h
x

EI s s

−
= − +  (S14) 

Employing the full-arch model, the internal moment distributions within 

the left and right sides of a non-tapered NW arch are defined by: 

( ) ( )( )1,

1 2 1 1 23

1 2

3
3

i F BM h
L L x L L L

EI L L

−
= − + − +  (S15) 

( ) ( )( )( )2,

1 2 1 2 1 23

1 2

3
3 2

i F BM h
L L x L L L L

EI L L

−
= − + − + +  (S16) 

Elastic strain energy 

The elastic strain energy is determined by integrating the internal 

moment distribution along the detached length of the NW 6:  

( )
2

0

1

2

s

E iU M dx
EI

=   (S17) 

Employing the half-arch model, the elastic strain energy for a NW arch 

with an arbitrary cross-section is defined by: 

2

, 3

6
E H B

h EI
U

s
− ==   

(S18) 

Employing the full-arch model, the elastic strain energy for a NW arch 

with an arbitrary cross-section is defined by: 

( )
32

1 2

, 3 3

1 2

3

2
E F B

h L L EI
U

L L
−

+
=   

(S19) 

Total adhesion energy 

The total adhesion energy is determined by considering the interfacial 

area formed between the NW and substrate: 

,A H B adU wL− = −  
(S20) 

where  is the adhesion energy per unit interfacial area, w  is the width 

of the interfacial area (i.e. the bottom facet-length of the NW), and
adL

is the total adhered length. Employing the half-arch model, the total 

adhesion energy for a NW arch with an arbitrary cross-section is defined 

by: 

, ( )A H BU w l s− = − −   (S21) 

Employing the full-arch model, the total adhesion energy for a NW arch 

with an arbitrary cross-section is defined by: 

( )( ), 1 2A F BU w l L L− = − − +   (S22) 

Interfacial adhesion energy per unit area 

The total energy of a NW arch, denoted as 
,T H BU −

 and 
,T F BU −

when 

using the half-arch and full-arch model, respectively, is simply 

quantified by summing the elastic strain energy and the total adhesion 

energy. When a NW arch is at an equilibrium state, the derivative of its 

total energy with respect to its detached length is equal to zero. 

Specifically, for the half-arch model, 
, / 0T H BdU ds− =  , and for the full-

arch model, 
, 1 , 2/ / 0T F B T F BU L U L− −  +   = . As the detached length of 

the NW approaches the critical length, i.e. as s l→  for the half-arch 

model, and 
1 2L L l+ →  for the full-arch model, the interfacial adhesion 

energy per unit area can be determined. Employing the half-arch model, 

the interfacial adhesion energy per unit area for a NW arch with an 

arbitrary cross-section is given by eqn (6) in the main manuscript. If the 

NW has a regular cross-section, its energy is given by eqn (9) in the main 

manuscript. If the NW has an irregular cross-section, its energy is given 

by: 

( )2 2

1 1 2

, 4

9 3 4

8
H B irr

h Ea a a

s
−

+
 = −  

(S23) 

Employing the full-arch model, the interfacial adhesion energy per unit 

area for a NW arch with an arbitrary cross-section is given by eqn (7) in 

the main manuscript. If the NW has a regular cross-section, its energy is 

given by: 

( ) ( )
22 2 2 3

1 2 1 2

, 4 4

1 2

45 3

64

avg

F B reg

h L L L L Ea

L L
−

+ +
 = −  

(S24) 

If the NW has an irregular cross-section, its energy is given by: 
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( ) ( ) ( )
22 2 2 2

1 2 1 2 1 1 2

, 4 4

1 2

9 3 4

64
F B irr

h L L L L Ea a a

L L
−

+ + +
 = −  

(S25) 

 

 

 

Tapered nanowire – full-arch model 

Internal moment distribution 

The internal moment distribution within the left and right sides of a tapered, irregular NW arch can be defined with respect to the NW’s degree of 

tapering by: 

( ) ( ) ( )( ) ( )1 1
1, , 1 1 1 2 1 1 2 1 2 1 1 2 13

1 2

3 3
3 2 3

16
i F B taper wedge wedge

da da
M Q a L L L L L x L L x L L L a x

L L dx dx
−

    
= − + + + − + − + −    

    
 

where ( ) ( )
2

1 1
1 1 1 14 wedge wedge

da da
Q hE Z a x a L x

dx dx

  
= + − + −  

  
 

(S26) 

 

( ) ( ) ( )( ) ( ) ( ) ( )( )
2 21 1

2, , 2 1 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 23

1 2

3 3
3 3 2 2

16
i F B taper wedge wedge

da da
M Q a L L L L x L L x L L a L L L L L x L L

L L dx dx
−

    
= + + + − + − + + + + − +    

    
 

where ( ) ( ) ( )
2

1 1
2 1 1 2 1 14 wedge wedge

da da
Q hE Z a L L x a L x

dx dx

  
= + + + − + −  

  
 

(S27) 

 

Total adhesion energy 

Employing the full-arch model, the total adhesion energy for a NW arch with a tapered cross-section can be defined by considering that the interfacial 

area is a trapezoid: 

( )1@ 0 1@ 1 2

, , 1 2
2

x x L L

A F B taper

a a
U l L L

= = +

−

+ 
=  − + 

 
  

(S28) 

where 
1@ 0xa =

 and 
1@ 1 2x L La = +

 are the major side-lengths at the left and right crack fronts, respectively.  At equilibrium, they can then be expressed in 

terms of the reference major facet-length, their distance from the wedge contact-point, and the degree of tapering, respectively: 

1
1@ 0 1,x wedge wedge

da
a a x

dx
= = −  

(S29) 

( )1
1@ 1 2 1, 1 2x L L wedge wedge

da
a a L L x

dx
= + = + + −  

(S30) 

The total adhesion energy for a NW arch can now be defined with respect to the degree of tapering: 

( )( ) 1 21
, , 1 2 1,

2

2

wedge

A F B taper wedge

L L xda
U l L L a

dx
−

 + −  
= − − + +   

  
  (S31) 

Derivation of the stored elastic strain energy, and subsequently, the interfacial adhesion energy per unit area of a tapered NW arch was undertaken in 

the same manner as for a non-tapered NW. However, the analytical solutions were impractically long to present here, and were implemented numerically 

in order to calculate the non-idealised energy values plotted in Fig. 5b in the main manuscript. The interfacial adhesion energy per unit area values 

obtained for all NWs when using, (1) the half-arch model, and assuming ideal NW geometry, (2) the full-arch model, and assuming ideal NW geometry, 

and (3), the full-arch model, and accounting for the irregular and tapered cross-section of a NW are provided in Table S9 and S10 (ESI S7). 
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S5. VdW interaction energies and Hamaker constants for interfacial systems

The native and thermally grown SiO2 film of the as-received and heat-

treated Si substrates, respectively, were measured using a VUV-variable 

angle spectroscopic ellipsometer (J.A. Woollam Co., Inc. USA). 

Amplitude and phase difference data was acquired at incidence angles 

of 65°, 70°, and 75° in the wavelength range of 300-1600 nm. Film 

thickness was extracted by fitting a Cauchy dispersion model to the data. 

The as-received and heat-treated Si substrates exhibited oxide layer 

thicknesses of 2.57 and 2.81 nm, respectively. This shows that the heat-

treatment of the substrate prior to testing negligibly increased the oxide 

thickness. The vdW interaction potential between two atoms inversely 

scales with their separation distance to the power of six. 7 Therefore, as 

the oxide layer thickness of the Si substrate is above 2 nm, the vdW 

interaction at the NW-substrate interface can be primarily associated 

with the dielectric response of the oxide layer. The vdW interaction 

between a ZnO NW and both a SiO2 and Si surface were selected for 

evaluation in order to establish how recognition of the oxide layer 

provides a significantly different theoretical adhesion energy. 

Furthermore, the interface was evaluated at an entirely dry state – when 

the surfaces are separated by air; and an entirely wet state – when the 

surfaces are separated by molecules of water. Four theoretical interfacial 

systems of interest were therefore evaluated; ZnO-water-SiO2, ZnO-air-

SiO2, ZnO-water-Si, and ZnO-air-Si. 

 

Fig. S5 (a) AFM micrograph a typical NW (NWA3) deposited on a Si substrate, 

used for calculated the surface roughness of both the NW and substrate. AFM line-

profiles of (b) the surface of a NW, along its longitudinal axis (LP1), and (c) the Si 

substrate (LP2). The location of the line-profiles are demarcated by the dotted line 

in the AFM micrograph. 

Surface examination of a typical ZnO NW on the Si substrate was 

conducted using AFM, and the micrograph is provided in Fig. S5a. LPs 

of the NW and substrate surface are presented in Fig. S5b and c, 

respectively, and are aligned parallel to the longitudinal axis of the NW 

as demarcated by the dotted lines in Fig. S5a. The respective LPs provide 

0.27 nmqR =  and 0.25 nm for the NW and substrate. The vdW 

interaction energy of each interface is  quantified by a parallel plate 

model: 8 

132

212
vdW

avg

A

d



=

 
(S32) 

where 
132A  is the Hamaker constant for the specific interfacial system. 

The sum of 
qR  values for each surface is 0.52 nmavgd = . 9 Note, that a 

more accurate determination of 
qR   was conducted by DelRio et al. by 

lowering the AFM examined topography of one surface onto that of the 

other until an asperity contact occurred, and then summing the 

separation computed at every pixel. 10 Such a method accounts for when 

asperities on one surface fit into the trough of the other, and is expected 

to predict a smaller separation. 

To evaluate the Hamaker constant of the system, pair-wise 

summation of all atom-atom interactions as introduced by Hamaker 11 is 

not sufficient for approximating the interaction between two bodies 

through a medium, and therefore we implemented the continuum 

approach presented by Dzyaloshinskii-Lifshitz-Pitaevskii. 12 As such, 

the non-retarded Hamaker constant for two macroscopic half-spaces, 1 

and 2, interacting over a medium 3 is given by: 12-14 

( )13 23

132 3
0 1

3
'

2 m s

kT
A

s

 

= =

 
=   (S33) 

where, k  is Boltzmann’s constant, and T  is the absolute temperature 

of the system, the prime on the summation denotes the zero frequency 

term is halved, and: 

( ) ( )
( ) ( )

i i

i i

k m l m

k m l m

kl
   

   

−
 =

+
 (S34) 

where ( )ik m   and ( )il m  are the dielectric response functions of 

material k  and l , respectively, when evaluated at the imaginary 

frequencies, i m  , where ( )24 /m m kT h =   , where h  is Planck’s 

constant. The dielectric response functions can be described using a 

Lorentz harmonic-oscillator model using the Ninham-Parsegian 

representation: 15, 16 

( ) 2
1

2

i 1

1

N
q

q
q

q q

C
 

 

 

=

= +
 

+ + 
 
 

  (S35) 

where
qC , 

q , and 
q  are the spectral constants (related to the 

absorption strengths), the characteristic absorption frequencies, and the 

related damping coefficients of the oscillator in the infrared and 

ultraviolet range of the materials and media, respectively. Table S2 

summarised the qC , q , and q  parameters used to construct ( )i   

for each interface material and media of interest in this study. Parameters 

describing absorption frequencies within the infrared and ultraviolet 

range are denoted with subscripts ‘IR’ and ‘UV’, respectively. Three 

respective absorption peaks are described in order to construct the 

dielectric response within the UV spectrum for both SiO2 and Si. Five 

and six respective absorption peaks are described in order to construct 

the dielectric response within the UV and IR spectrum for water. The 

Hamaker constants and vdW interactions energies for each interfacial 

system of interest, derived from eqn (S32), (S33), (S34), and (S35) are 

provided in Table S3. 
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Table S2. Spectral parameters, 
qC , 

q , and 
q , used to construct ( )i   for each interface material and media. 

 IRC  
1410IR   

(rad/s) 

1310IR   

(rad/s) 
UVC  

1610UV   

(rad/s) 

1510UV   

(rad/s) 

ZnO 17 

8.15   0.7  0  2.648   0.895   0  

SiO2 
14 

0.829  

0.095  

0.798  

0.867  

1.508  

2.026  

0  1.098  2.034  0  

Si 14 

0.043  

0.050  

0.059  

0.345  

0.535  

0.884  

0  10.448  0.503  0  

water 14, 18 

1.4635  

0.7368  

0.1526  

0.0136  

0.0751  

 

0.314  
1.047  

1.396  
3.065  
6.450  

2.29  
5.78  

4.22  
3.81  
8.54  

0.0392  
0.0570  

0.0923  
0.1556  
0.1522  
0.2711  

1.2593  
1.5172  

1.7296  
1.9724  
2.2606  
2.8068  

0.774  
1.335  

2.336  
3.110  
4.491  
9.498  

 

Table S3. Hamaker constants and vdW interaction energy for each interfacial system. 

 20

132 10  (J)A −  2 (mJ m )vdW −  

ZnO-water-SiO2 
0.758  0.74  

ZnO-air-SiO2 
7.377  7.24  

ZnO-water-Si 
4.589  4.50  

ZnO-air-Si 
13.025  12.78  

 

S6. Uncertainty analysis 

The obtained adhesion energy per unit interfacial area values are associated with multiple sources of experimental uncertainty. Precise determination 

of a NW’s facet-lengths at the wedge contact-point, 
,avg wedgea , 

1,wedgea , and 
2,wedgea  is limited by the spatial resolution of the AFM and SEM used to 

measure t   and w   at the ends of a NW, in combination with the optically measured distance between the end of a NW to its wedge contact-point, 
leftL  

and 
rightL . Absolute uncertainties of 

, 1, 2, 5 nmavg wedge wedge wedgea a a =  =  =   are defined. We also define an absolute uncertainty of 1 μmwedgex =   for 

the x co-ordinate of the wedge contact-point. The facet-lengths and x co-ordinate of the wedge contact-point are also used to evaluate the degree of 

tapering of a NW; an absolute uncertainty of 
1 / 0.1 nm/μmda dx =  is therefore defined.  Precise determination of the deflection equation fitting 

parameters, s , 
1L , 

2L , h , and 
wh  is limited to be the accuracy of the derived deflection co-ordinates, which are in turn, dependent on the pixel size 

and noise of the optical micrographs. Absolute uncertainties of  1 2 0.1μmws L L h h =  =  =  =    are defined.  We also assume the elastic modulus 

of a hexagonal ZnO NW 4 is associated with an absolute uncertainty of 10 GPaZnOE =  . The absolute uncertainty associated with each calculated 

energy value can then be computed using the propagation of uncertainty rule for general functions. 19 The absolute uncertainty associated with the 

energy values determined using the half-arch model, and assuming ideal NW geometry, is given by: 

22 2 2

, , , ,

,

H B reg H B reg H B reg H B reg

H B reg ZnO avg

ZnO avg

E s h a
E s h a

− − − −

−

         
 =  +  +  +                  

 (S36) 

The absolute uncertainty associated with the energy values determined using the full-arch model, and assuming ideal NW geometry, is given by: 

22 22 2

, , , , ,

, 1 2

1 2

F B reg F B reg F B reg F B reg F B reg

F B reg ZnO w avg

ZnO w avg

E L L h a
E L L h a

− − − − −

−

           
 =  +  +  +  +                      

 (S37) 

The absolute uncertainty associated with the energy values determined using the full-arch model, and accounting for the irregular and tapered cross-

section of a NW, is given by: 
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2 22 2

, , , , , , , ,

, , 1 2

1 2

2

, , , ,

1 2

1 2

F B irr taper F B irr taper F B irr taper F B irr taper

F B irr taper ZnO w

ZnO w

F B irr taper F B irr taper

E L L h
E L L h

a a
a a

− − − −

−

− −

          
 =  +  +  +  +      
          

   
+  +   

    ( )
( )

1
2 22 2

, , , ,

1

1

/
/

F B irr taper F B irr taper

wedge

wedge

x da dx
x da dx

− −
    
+  +             

 (S38) 

The calculated positive and negative bounds of absolute uncertainty for 
,H B reg− , 

,F B reg− , and 
, ,F B irr taper− , are provided in Table S9 and S10 (ESI 

S7). 

 

S7. Nanowire geometry, deflection co-ordinates, deflection model fitting, and interfacial adhesion energy data 

Table S4. Geometric parameters for all NW samples. 

 

1,

(nm)

wedgea
 

2,  

(nm)

wedgea
 

,

(nm)

avg wedgea
 1 nm

 
μm

da

dx

 
 
 

 1

2

a
Z

a
=  

,

4 29

 

(m 10 )

reg wedgeI

−
 

, ,  

(nm)

e reg wedgeD
 

,

4 29

 

(m 10 )

irr wedgeI

−
 

, ,  

(nm)

e irr wedgeD
 

 

(μm)

L
 

NW 1 75.0 59.5 67.2 0.940 1.26 1.11 134.5 1.64 123.6 44.33 

NW 2 107.1 85.5 96.3 -0.770 1.25 4.65 192.6 6.83 177.4 71.78 

NW 3 170.6 179.2 174.9 -1.100 0.95 50.66 349.8 46.32 355.5 76.39 

NW 4 256.0 271.6 263.8 0.379 0.94 262.14 527.6 235.44 537.8 85.85 

NW 5 130.9 151.6 141.2 -0.958 0.86 21.53 282.5 16.39 295.7 56.74 

NW 6 92.6 119.9 106.3 -0.012 0.77 6.91 212.6 4.22 229.6 82.19 

NW 7 254.8 306.9 280.8 1.313 0.83 336.68 561.7 237.41 594.8 88.62 

NW 8 111.2 112.3 111.8 0.244 0.99 8.44 223.5 8.30 224.2 62.78 

NW 9 94.7 131.4 113.0 0.041 0.72 8.84 226.1 4.69 248.5 63.44 

NW 10 268.5 295.1 281.8 -0.063 0.91 341.27 563.6 286.86 580.9 76.26 

NW 11 85.0 98.4 91.7 0.000 0.86 3.83 183.4 2.91 192.1 50.53 

 

Table S5. Deflection co-ordinates (Part 1: NW arches 1-6) obtained from interferometric analysis of fringe patterns. 

NWA 1 NWA 2 NWA 3 NWA 4 NWA 5 NWA 6 

 (μm)x    (μm)y    (μm)x    (μm)y    (μm)x    (μm)y    (μm)x    (μm)y    (μm)x    (μm)y    (μm)x    (μm)y   

-13.300 

-11.980 

-11.218 
-10.558 

-10.102 

-9.492 
-8.934 

-8.477 

-8.071 

-7.563 

-7.157 

-6.650 
-6.244 

-5.888 

-5.431 
-4.975 

-4.518 

-4.112 
-3.604 

5.431 

6.041 
6.548 

7.107 

7.564 
8.020 

0.000 

0.101 

0.203 
0.304 

0.405 

0.506 
0.608 

0.709 

0.810 

0.911 

1.013 

1.114 
1.215 

1.316 

1.418 
1.519 

1.620 

1.721 
1.823 

2.025 

1.924 
1.823 

1.721 

1.620 
1.519 

-27.873 

-25.757 

-24.149 
-22.203 

-21.102 

-20.002 
-18.479 

-17.548 

-16.533 

-15.348 

-14.417 

-13.571 
-12.894 

-11.878 

-10.863 
-9.932 

-8.747 

-7.986 
-7.055 

-5.447 

12.325 
13.256 

14.271 

15.118 
15.964 

0.000 

0.101 

0.203 
0.304 

0.405 

0.506 
0.608 

0.709 

0.810 

0.911 

1.013 

1.114 
1.215 

1.316 

1.418 
1.519 

1.620 

1.721 
1.823 

1.924 

1.924 
1.823 

1.721 

1.620 
1.519 

-23.802 

-22.447 

-20.923 
-19.907 

-18.638 

-17.706 
-16.860 

-16.098 

-14.743 

-13.897 

-13.050 

-12.119 
-11.188 

-10.426 

-9.495 
-8.479 

-7.632 

-6.870 
-5.770 

-4.839 

-3.738 
10.145 

10.992 

12.854 
14.463 

0.000 

0.101 

0.203 
0.304 

0.405 

0.506 
0.608 

0.709 

0.810 

0.911 

1.013 

1.114 
1.215 

1.316 

1.418 
1.519 

1.620 

1.721 
1.823 

1.924 

2.025 
2.228 

2.126 

2.025 
1.924 

-18.047 

-15.839 

-14.395 
-12.951 

-11.677 

-10.149 
-8.875 

-7.176 

-5.563 

-3.694 

3.355 

4.968 
7.431 

8.535 

9.894 
10.913 

12.442 

13.631 
15.669 

0.000 

0.101 

0.203 
0.304 

0.405 

0.506 
0.608 

0.709 

0.810 

0.911 

0.911 

0.810 
0.709 

0.608 

0.506 
0.405 

0.304 

0.203 
0.101 

-13.424 

-12.102 

-10.169 
-8.949 

-7.271 

-5.949 
-4.170 

3.865 

5.695 

7.576 

8.949 

10.932 

0.000 

0.101 

0.203 
0.304 

0.405 

0.506 
0.608 

0.608 

0.506 

0.405 

0.304 

0.203 

-14.541 

-13.147 

-12.260 
-11.246 

-10.232 

-9.219 
-8.395 

-7.381 

-6.304 

-5.290 

-4.340 

4.467 
5.481 

6.241 

7.128 
7.952 

8.712 

9.409 
10.232 

11.119 

12.133 

0.000 

0.101 

0.203 
0.304 

0.405 

0.506 
0.608 

0.709 

0.810 

0.911 

1.013 

1.013 
0.911 

0.810 

0.709 
0.608 

0.506 

0.405 
0.304 

0.203 

0.101 
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8.426 

8.934 

9.391 

9.848 
10.203 

10.609 

11.066 
11.472 

11.827 

12.335 
12.690 

13.249 

13.655 
14.315 

14.975 

1.418 

1.316 

1.215 

1.114 
1.013 

0.911 

0.810 
0.709 

0.608 

0.506 
0.405 

0.304 

0.203 
0.101 

0.000 

16.725 

17.402 

18.164 

18.841 
19.518 

20.195 

20.957 
21.465 

22.142 

22.903 
23.580 

24.172 

25.019 
25.611 

26.373 

27.219 

1.418 

1.316 

1.215 

1.114 
1.013 

0.911 

0.810 
0.709 

0.607 

0.506 
0.405 

0.304 

0.202 
0.101 

0.000 

-0.101 

15.563 

16.918 

18.018 

19.034 
19.965 

20.897 

21.828 
22.590 

23.775 

24.537 
25.384 

26.145 

27.161 
28.008 

28.854 

29.616 
30.717 

31.563 

32.918 

1.823 

1.721 

1.620 

1.519 
1.418 

1.316 

1.215 
1.114 

1.013 

0.911 
0.810 

0.709 

0.608 
0.506 

0.405 

0.304 
0.203 

0.101 

0.000 

 

Table S6. Deflection co-ordinates (Part 2: NW arches 7-11) obtained from interferometric analysis of fringe patterns.    

NWA 7 NWA 8 NWA 9 NWA 10 NWA 11 

 (μm)x    (μm)y    (μm)x    (μm)y    (μm)x    (μm)y    (μm)x    (μm)y    (μm)x    (μm)y   

-29.081 

-27.053 
-25.660 

-23.886 

-22.112 
-20.972 

-19.388 

-17.043 
3.738 

5.322 

7.096 
8.807 

10.201 

12.355 

0.000 

0.101 
0.203 

0.304 

0.405 
0.506 

0.608 

0.709 
0.709 

0.607 

0.506 
0.405 

0.304 

0.202 

-9.504 

-8.300 
-7.286 

-6.082 

-5.005 
-3.548 

-1.837 

1.964 
3.485 

5.005 

6.146 
7.413 

8.617 

9.757 
11.088 

12.545 

14.636 

0.000 

0.101 
0.203 

0.304 

0.405 
0.506 

0.608 

0.608 
0.506 

0.405 

0.304 
0.203 

0.101 

0.000 
-0.101 

-0.203 

-0.304 

-11.429 

-9.524 
-8.381 

-7.365 

-6.476 
-5.333 

-4.444 

-3.175 
3.175 

4.444 

5.587 
6.603 

8.000 

9.016 

0.000 

0.101 
0.203 

0.304 

0.405 
0.506 

0.608 

0.709 
0.709 

0.607 

0.506 
0.405 

0.304 

0.202 

-19.810 

-14.603 
-10.921 

-5.206 

4.825 
8.762 

12.571 

16.889 

0.000 

0.203 
0.405 

0.608 

0.608 
0.405 

0.203 

0.000 

-5.757 

-5.030 
-4.631 

-3.868 

-3.396 
-2.524 

-1.725 

2.052 
2.779 

3.650 

4.195 
4.885 

5.321 

6.047 
6.410 

7.173 

0.000 

0.101 
0.203 

0.304 

0.405 
0.506 

0.608 

0.608 
0.506 

0.405 

0.304 
0.203 

0.101 

0.000 
-0.101 

-0.203 

 

Table S7. Deflection curve fitting parameters, 
wh , s , and coefficient of regression, 

2r , for all NW arches using the ‘half-arch’ model 

 Left side Right side 

  (μm)wh   (μm)s  2r   (μm)wh   (μm)s  2r  

NWA 1 2.56 16.32 0.9866 2.49 15.32 0.9980 

NWA 2 2.53 35.62 0.9880 2.84 27.98 0.9977 

NWA 3 2.90 38.15 0.9970 3.03 39.37 0.9921 

NWA 4 1.10 22.34 0.9971 0.89 16.50 0.9906 

NWA 5 1.29 28.53 0.9981 0.57 13.56 0.9975 

NWA 6 1.66 23.42 0.9990 1.23 14.00 0.9986 

NWA 7 0.89 19.67 0.9960 0.82 19.48 0.9977 

NWA8 0.96 15.72 0.9927 1.05 18.42 0.9955 

NWA 9 0.82 11.58 0.9899 1.80 30.84 0.9986 

NWA 10 0.62 16.72 0.9939 1.06 29.53 0.9993 

NWA 11 1.02 8.92 0.9915 1.23 10.30 0.9938 
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Table S8. Deflection curve fitting parameters, 
wh ,

1L , 
2L ,

wedgex  and coefficient of regression, 
2r , for all NW arches using the ‘full-arch’ model, when considering non-

tapered and tapered geometry. 

 Non-tapered Tapered 

  (μm)wh  
1L  (μm)  

2L  (μm)  2r L
 2r R

  (μm)wh  
1L  (μm)  

2L  (μm)   (μm)wedgex  2r L
 2r R

 

NWA 1 2.53 17.26 15.12 0.9989 0.9987 2.21 19.42 12.24 14.33 0.9980 0.9981 

NWA 2 2.16 46.03 18.64 0.9961 0.9975 2.72 39.81 28.46 36.82 0.9980 0.9991 

NWA 3 2.80 37.69 36.96 0.9980 0.9985 2.21 26.74 42.04 30.71 0.9994 0.9996 

NWA 4 1.08 22.29 20.91 0.9996 0.9962 1.07 22.62 20.43 21.79 0.9996 0.9962 

NWA 5 0.78 15.46 20.14 0.9977 0.9970 0.72 13.73 21.37 17.34 0.9976 0.9954 

NWA 6 1.33 20.39 14.22 0.9994 0.9997 1.33 20.37 14.25 18.35 0.9994 0.9996 

NWA 7 1.32 30.51 33.36 0.9972 0.9973 1.26 32.22 29.66 36.66 0.9973 0.9980 

NWA8 0.95 14.73 16.53 0.9994 0.9994 0.96 15.02 16.35 15.24 0.9993 0.9995 

NWA 9 0.83 11.19 14.86 0.9995 0.9980 0.83 11.24 14.81 12.38 0.9995 0.9980 

NWA 10 0.78 27.00 19.54 0.9974 0.9994 0.78 26.94 19.65 25.22 0.9974 0.9994 

NWA 11 1.28 11.15 10.71 0.9965 0.9978 1.28 11.15 10.71 10.86 0.9965 0.9978 

 

 

Table S9. Interfacial adhesion per unit area for all NW arches using the half-arch model (left and right sides) when assuming ideal NW geometry, and the associated negative 

and positive bounds of absolute uncertainty. 

 Half-arch model 

 ( )2

,  - left mJ mH B reg

−

−  ( )2

,  - right  mJ mH B reg

−

−  

 nominal -ve bound +ve bound nominal -ve bound +ve bound 

NWA 1 38.40 25.48 56.45 46.74 30.90 68.97 

NWA 2 4.84 3.49 6.59 16.00 11.62 21.70 

NWA 3 28.90 22.69 36.44 27.82 21.92 34.98 

NWA 4 121.03 86.11 166.28 266.40 179.50 383.05 

NWA 5 9.62 6.73 13.48 36.95 20.33 62.54 

NWA 6 14.98 10.45 21.07 64.81 42.74 95.86 

NWA 7 158.38 107.46 226.15 141.41 94.01 205.22 

NWA 8 28.86 18.29 44.09 18.32 11.89 27.43 

NWA 9 73.36 44.27 116.71 7.05 5.03 9.71 

NWA 10 151.54 91.78 236.09 44.90 31.96 61.58 

NWA 11 172.53 105.35 273.42 140.54 89.52 214.77 

 

  



ESI 20200320  Mead, Wang, Zimmermann, Huang 

 

Page 11 
 

Table S10. Interfacial adhesion per unit area for all NW arches using the full-arch model when considering ideal as well as irregular and tapered geometry, and the 

associated negative and positive bounds of absolute uncertainty. 

 Full-arch model 

 ( )2

,   mJ mF B reg

−

−  ( )2

, ,   mJ mF B irr taper

−

−  

 nominal -ve bound +ve bound nominal -ve bound +ve bound 

NWA 1 39.55 26.21 58.22 41.48 21.82 70.65 

NWA 2 13.48 9.52 18.76 20.29 13.35 30.44 

NWA 3 29.40 23.02 37.17 81.90 56.52 117.34 

NWA 4 134.72 95.46 185.74 112.66 76.06 161.76 

NWA 5 25.39 15.71 39.35 41.30 22.57 72.16 

NWA 6 37.73 25.28 55.02 26.54 16.50 41.47 

NWA 7 51.32 38.11 67.93 17.04 10.59 26.26 

NWA 8 29.23 18.46 44.78 25.09 14.52 41.06 

NWA 9 52.54 31.94 83.05 32.43 17.88 55.67 

NWA 10 71.75 47.09 105.11 64.02 40.88 96.62 

NWA 11 121.29 78.01 183.75 99.58 59.85 160.25 
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