1	Multiple targeting strategies achieve novel protein drug
2	deliver into cancer cells to proapoptosis lung cancer cell by
3	precisely inhibiting survivin
4	
5	Fabiao Hu¹, Ting Yan¹, Wei Guo¹, Qiuli Liu², Myong Hun Han¹,³, Chang Liu¹, Yuping
6	Liu², Wenyun Zheng*², Fang You*⁴.⁵, Yi Yang⁵, Wenliang Zhang⁰, Xingyuan Ma*¹
7	
8	State Key Laboratory of Bioreactor Engineering, East China University of Science and
9 10	² Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China
11	University of Science and Technology, Shanahai 200237, P. R. China
12	³ Department of Genetics, Faculty of Life Science, KIM IL SUNG University, Pyongyang
13	999093, Democratic Peoples Republic of Korea
14	⁴ Department of Chemical and Biomolecular Engineering, National University of
15	Singapore, Singapore 117585, Singapore
16	^₅ SinGENE Biotech Pte Ltd, Singapore Science Park, Singapore 118258, Singapore
17	⁶ Center of Translational Biomedical Research, University of North Carolina at
18	Greensboro, Greensboro, North Carolina 27310,United States
19	
20	
21 22	
22	
24	
25	
26	*Correspondence:
27	Wenyun Zheng
28	zwy@ecust.edu.edu.cn
29	Fang You
30	youfang@nus.edu.sg
31	Xingyuan Ma
32 33 34	maxy@ecust.edu.cn

Figure S1. Construction of recombinant plasmid pET-24a(+)-TATm-Survivin (T34A). (A) Results of DNA sequence and amino acid sequence showed G2A, R5A, and R9A mutations in TAT peptide gene and T34A mutation in the survivin gene after PCR amplification. (B) Schematic diagram of the construction of recombinant plasmid pET-24a (+)-TATm-Survivin (T34A). (C) Agarose gel electrophoresis of TATm-Survivin (T34A) via PCR amplification. Lane M, DL2000 marker; lane 1-3, TATm-Survivin (T34A) amplification fragment.

Figure S2. Expression and inclusion body washing of TmSm protein analyzed by SDSPAGE electrophoresis. Lane M, protein marker; lane 1, whole bacterial solution before
induction; lane 2, whole bacterial solution after induction; lane 3, the collected
supernatant after cell disruption; lane 4, the collected precipitation after cell disruption;
lane 5-7, inclusion body of TmSm protein after 1, 2, and 3 washings, respectively; lane 8,
the dissolved inclusion body.

Figure S3. Purification of TmSm protein and SDS-PAGE analysis. (A) On-column
refolding of TmSm protein *via* SP sepharose chromatogram and SDS-PAGE analysis.
Lane M, protein marker; lane 1, the dissolved inclusion body; lane 2, column filtrate; lane
3, SP column eluate. (B) Purification of TmSm protein *via* nickel column chromatogram
and SDS-PAGE analysis. Lane M, protein marker; lane 1, SP column eluate; lane 2, nickel column eluate.

Figure S4. Particle size and EE of TmSm/PLGA NPs produced by high-pressure homogenization with 120, 160, and 200 MPa for 1 cycle, respectively. Data were expressed as mean \pm SD (n = 3).

Figure S6. Particle size (A) and zeta potential (B) of TmSm/PLGA NPs after incubation 3 with different pH media for 24, 48, and 72 h, respectively. Data were expressed as mean 4 \pm SD (n = 3). **P* < 0.05 and ***P* < 0.01.

Figure S8. Zeta potential change of A549 cells (A) and Capan-2 cells (B) after incubated
with TmSm/PLGA NPs for 6 and 12 h, respectively. Data were expressed as mean ± SD
(n = 3). n.s. represented not significant.

Figure S9. Cytotoxicity assay. (A) The viabilities of A549 and Capan-2 cells treated with 3 TATm-EGFP protein at 200 μ g/mL (equivalent to the maximum molar concentration of 4 TmSm) for 24, 48, and 72 h, respectively. (B) L-02 cells were incubated with TmSm, 5 blank PLGA NPs, and TmSm/PLGA NPs for 24, 48, and 72 h, respectively. Data were 6 expressed as mean ± SD (n = 3).

1 Tables:

Table S1. Mathematical models for the release of TmSm from mPEG-PLGA NPs.

Release profile	Parameter	Zero-order	First-order	Higuchi	Ritger-Peppas	Weibull
	R ²	0.8246	0.9631	0.9513	0.9814	0.9915
nU 7 4	k	0.1098	0.0262	1.9675	4.8601	0.0435
pπ 7.4	n	/	26.8700	1	0.3397	32.8654
	m	/	/	1	2.1451	1.5410
	R ²	0.6672	0.9014	0.4221	0.9789	0.9944
	k	32.774	0.1054	4.8176	23.4478	0.3957
ρ Π 0.5	n	/	59.5617	1	0.1932	69.5489
	m	/	/	1	-1.8248	3.4846
	R ²	0.7018	0.9174	0.6090	0.9786	0.9956
	k	36.4848	0.0799	6.2770	27.1000	0.4413
μπ 5.0	n	1	78.7931	1	0.2191	91.9163
	m	/	/	/	-3.0627	4.4870