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Appendix A
Electrical measurements were conducted using a semiconductor parameter analyser (B1500A, 
Agilent Technologies). Drain current as a function of the back-gate voltage is shown on the left 
for each sample, while drain current as a function of drain voltage is on the right. 
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Supplementary Figure S1. Electrical characteristics for (a) monolayer, (b) bilayer, and (c) few layered device, used 
for understanding the gate, source-drain voltages range, which operates the device in the different regimes, as well 
as assessing the contacts quality.

KPFM measurements were performed in the “dual frequency” configuration, where the 
topography is recorded at the fundamental resonance frequency of the tip, and the surface 
potential is measured at its second harmonic using a single pass. Figure S2 presents the surface 
potential cross sections taken between source and drain, where source and drain electrodes were 
grounded, and the back-gate voltage was modified. These plots were used to determine the Fermi 
level shift as a response to each applied back-gate bias. It was later used in the gap-states 
analysis, described in details in appendix B.
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Supplementary Figure S2. Surface potential measurements at varying back-gate voltages while , for  𝑉𝑆 =  𝑉𝐷 = 0 𝑉

(a) monolayer, and (b) few layers. The bold lines represent the average surface potential over the MoS2 film, away 
from the grounded metal contacts.



In order to assess the effective back-gate potential reaching the MoS2, after the voltage drop on 
the oxide, together with the voltage drop on the MoS2 itself (for agreement with the KPFM tip, 
which measure the potential at the MoS2/air interface) - a proper finite element simulation was 
conducted. The results for the Few-layered sample are shown below, while for the bilayer in 
Figure 2d.

Few layers

Supplementary Figure S3. A cross-sectional electrostatic potential drop, from the MoS2/oxide interface at the right 
side of the figure, through the MoS2 channel, up to the air/MoS2 interface at the left side of the figure, for gate bias 
range of 6 to -16V, extracted from the electrostatic simulation.

A two-dimensional finite element simulation (Sentaurus TCAD, Version L-2016.03, Synopsys) 
of a bi-layer MoS2 based FET-like structure, emulating the measured device at the same 
measuring conditions. An air gap of  was added on top of the MoS2 layer to enforce 200𝑛𝑚
Neumann boundary conditions apart from the MoS2 layer. Mid-gap traps were added to the 
simulated MoS2 layer (including exponential tail close to the conduction band, a base uniform 
distribution, and several different mid-gap peaks), in order to track measured Fermi level shift as 
function of the applied back-gate voltage, at the upper interface of the device.

Regarding the way of distinguishing between FL pinning due to metal/semiconductor contact, or 
due to the GS at the semiconductor itself, we have fabricated and analysed many samples, some 
of which had significant FL pinning at the MoS2/Au interface. As demonstrated below, our 
KPFM measurements can distinguish between FL pinning at the MoS2/Au interfaces versus 
pinning by gap states the MoS2 layer itself; consequently, all the measurements presented in the 
manuscript are of samples who had small FL pinning at the interface in order to focus on FL 
pinning at the MoS2 layers.

The Figure below present raw data measured for samples with FL pinning at the MoS2/Au 
contact (top), in comparison to FL pinning at the MoS2 layer itself (bottom). The main difference 



is that in the top Figure the measured surface potential (which is a direct measurement of the FL) 
at the two contacts (circled) hardly changes with applied bias- pinning, and there is no substantial 
pinning in the MoS2 layer itself.  The pinning is also evident by the non-ohmic IV characteristic 
on the right. In the bottom figure the pinning (although substantial) is governed by the MoS2 
layer and not by the contacts and the corresponding I-V is ohmic.  Figure 2a in the manuscript 
represents a sample that is not significantly pinned both by the gap states and the contacts. 

(a)

FL is pinned close to the contacts but is shifted by a large 
range ~1.5 eV far away from the metal/semiconductor 
junction.

IV characteristics show clear 
schotky behavior.

(b)



 FL is not pinned close to the contacts but is shifted 
in a very small range <0.1 eV, even far away from 
the metal/semiconductor junction.

 IV characteristics show 
ohmic behavior.

Supplementary Figure S4. (a) Surface potential profiles and Schottky I-V characteristics for sample with FL 
pinning at the MoS2/Au contact. (b) Surface potential profiles and ohmic I-V characteristics for sample with FL 
pinning at the MoS2.  

(a)                                                                                     (b)

Supplementary Figure S5. Simulated gap states distribution for (a) 2 layers, (b) 9 layers. Conduction bands were 

aligned to 0 eV.

Appendix B

Extraction of the density of states



The charge concentration is given by:
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On the right side of the equation, Fermi-Dirac distribution is given by:
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Fermi-Dirac distribution as a function of , at a constant Energy is shown below: 𝑉𝐿

Supplementary Figure S6. Fermi-Dirac distribution as a function of , at a constant Energy.𝑉𝐿

And its derivative with respect to :𝑉𝐿
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Supplementary Figure S7. Derivative of Fermi-Dirac distribution with respect to , at a constant Energy.𝑉𝐿

When the width of   is much narrower relative to that of  it can be approximated by a delta 
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Inserting former equations we obtain:
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By applying , we remain with: 
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Thus the gap-states as a function of  is:𝑞𝑉𝐿
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