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I. GENERAL FORMULATION OF YSR STATE

Consider a superconductor described by the Hamiltonian Ĥ and the impurity potential V̂imp which has a finite real space
support S, namely Vimp(r) 6= 0 for r ∈ S. The YSR state |ψ〉 satisfies the Schrödinger equation

Ĝ−1(E) |ψ〉 = V̂imp |ψ〉 , (1)

with Ĝ−1(E) = E − Ĥ denote the inverse Green function of the superconductor. Thus, we have

|ψ〉 = Ĝ(E)V̂imp |ψ〉 . (2)

Thus, we have for r, r′ ∈ S, the wave function of the YSR state satisfies

ψ(r) =
∑
r′

G(E, r− r′)Vimp(r
′)ψ(r′), (3)

and the YSR state energy Es is determined from the condition det(F(E = Es)) = 0, where the matrix elements of the matrix
F(E) are

F (E, r, r′) = δr,r′I−G(E, r− r′)Vimp(r
′), (4)

where G(E, r− r′) is the real space representation of Ĝ(E) and I is the identity matrix of the same size as G(E, r− r′).

II. YSR STATE IN A 3D LAYERED SUPERCONDUCTOR

Let us consider a system consisting of layers of 2D BCS superconductors. Let us further assume the 2D layers can be described
by a continuum Bogoliubov-de Gennes Hamiltonian, and there exists an interlayer coupling (e.g. due to van der Waals interaction)
that couples nearest neighbor layers. The second quantized Hamiltonian for this system can be written as

H =
∑
j

∫
dk2

(2π)2
ψ†j (k)Hlayer(k)ψj(k) + (tψ†j (k)τzψj+1(k) + h.c.), (5)

Hlayer(k) = (
k2

2m
− µ)τz + ∆τx ≡ ξkτz + ∆τx, (6)

where k is the 2D momentum within one layer, µ is the chemical potential, ∆ is the superconducting pairing potential, j is
the layer index, τx,z are Pauli matrices in the Nambu space, t is the coupling between neighboring layers, ψ†j and ψj are the
corresponding Nambu spinors consisting of the electron creation and annihilation operators at momentum k.

Let us assume the magnetic impurity only couples to a single layer of the superconductor, and compute the wave function
amplitude of the YSR state within this layer. Using the general formulation introduced in the previous section, we first compute
the Green function G(E, r, n), which describes the amplitude when a quasiparticle of energy E propagates for a 2D distance
parallel to the layers and crosses n layers. Thus, the wave function amplitude at position r of the mth layerψ(r,m) then satisfies

ψ(r,m) =
∑
r′

G(E, r− r′,m)Vimp(r
′)ψ(r′, 0), (7)
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where we set the impurity potential Vimp(r) only exist in the 0th layer. Particularly, we are interested in the behavior of the
wave function within the layer that contains the magnetic impurity, namely ψ(r, 0). For a point impurity at r = 0, we have

ψ(r, 0) = G(E, r, 0)Vimp(0)ψ(0, 0). (8)

Thus, the spatial profile of ψ(r, 0) is closely related to the spatial profile of G(E, r, 0), which we will compute in the following.
The Green function G(E, r, n) can be obtained from its momentum space representation

G(E, r, n) =
1

(2π)3

∫ π

−π
dkze

ikzn

∫
dk2eik·r

E + (ξk + 2t cos kz)τz + ∆τx
E2 − (ξk + 2t cos kz)2 −∆2

' 1

2π

∫ π

−π
dkze

ikzn
ν2d
2π

∫ ∞
−∞

dξ

∫ 2π

0

dθeikr cos θ
E + ξτz + ∆τx
E2 − ξ2 −∆2

=
ν2d
2

∫ π

−π
dkze

ikzn

[
−<[f(r, kz)]

(E + ∆τx)√
∆2 − E2

+ =[f(r, kz)]τz

]
. (9)

Here, ν2d the 2D density of states at the Fermi energy, r = |r|, kz is the Bloch momentum perpendicular to the layers when
periodic boundary condition is assumed, and

f(r, kz) = J0(kF (1− 2t

µ
cos kz)r + iksr) + iH0(kF (1− 2t

µ
cos kz)r + iksr),

where kF =
√

2mµ is the Fermi momentum, ks = kF
√

∆2 − E2/µ. J0 and H0 are Bessel function and Hankel function,
respectively.

The real space single-particle Green function, which describes the amplitude when a quasiparticle of energy E propagates for
a 2D distance parallel to the layers and crosses n layers, can be written as

In the asymptotic limit with kF r � 1, we have

f(r, kz) '
√

2

πkF r(1− 2t
µ cos kz)

exp

[
ikF r(1−

2t

µ
cos kz)−

iπ

4
− ksr

]
+

2i

πkF r(1− 2t
µ cos kz)

. (10)

We have

G(E, r, 0) = ν2d

[
(E + ∆τx)√

∆2 − E2
f0(r) + f1(r)τz

]
(11)

with

f0(r) = −1

2

√
2

πkF r
e−ksr

∫ π

−π
dkz

√
1

1− 2t
µ cos kz

cos(kF r(1−
2t

µ
cos kz)−

π

4
)

' −1

2

√
2

πkF r
e−ksr

∫ π

−π
dkz(1 +

t

µ
cos kz) cos(kF r(1−

2t

µ
cos kz)−

π

4
)

= −
√

2π

kF r
e−ksr

[
J0(2kF r

t

µ
) cos(kF r −

π

4
) +

t

µ
J1(2kF r

t

µ
) sin(kF r −

π

4
)

]
(12)

f1(r) =
1

2

√
2

πkF r
e−ksr

∫ π

−π
dkz

√
1

1− 2t
µ cos kz

sin(kF r(1−
2t

µ
cos kz)−

π

4
) +

1

πkF r

∫ π

−π
dkz

1

(1− 2t
µ cos kz)

' 1

2

√
2

πkF r
e−ksr

∫ π

−π
dkz(1 +

t

µ
cos kz) sin(kF r(1−

2t

µ
cos kz)−

π

4
) +

2

kF r
√

1− 4t2/µ2

=

√
2π

kF r
e−ksr

[
J0(2kF r

t

µ
) sin(kF r −

π

4
)− t

µ
J1(2kF r

t

µ
) cos(kF r −

π

4
)

]
+

2

kF r
√

1− 4t2/µ2
. (13)

At small distance with 2kF rt/µ� 1, we have

f0(r) ' −
[√

2π

kF r
cos(kF r −

π

4
) + (

t

µ
)2
√

2πkF r sin(kF r −
π

4
)

]
e−ksr (14)

f1(r) '
[√

2π

kF r
sin(kF r −

π

4
)− (

t

µ
)2
√

2πkF r cos(kF r −
π

4
)

]
e−ksr +

2

kF r
√

1− 4t2/µ2
, (15)
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Table I. Tight-binding model parameters (in meV)

ξ0 t1 t2 t3 t4 t5

203.0 46.0 257.5 4.4 −15.0 6.0

which implies the wave function ψ(r, 0) decays as ∝ 1/
√
r, similar to the case of a 2D system.

At a larger distance when 2kF rt/µ� 1, we have

f0(r) ' − 1

kF r

√
2µ

t
e−ksr

[
cos(2kF r

t

µ
− π

4
) cos(kF r −

π

4
) +

t

µ
cos(2kF r

t

µ
− 3π

4
) sin(kF r −

π

4
)

]
(16)

f1(r) ' 1

kF r

√
2µ

t
e−ksr

[
cos(2kF r

t

µ
− π

4
) sin(kF r −

π

4
)− t

µ
cos(2kF r

t

µ
− 3π

4
) cos(kF r −

π

4
)

]
. (17)

In this case, we have the wave function ψ(r, 0) decays as ∝ 1/r, similar to the case of a 3D system.
The crossover between the two types of decay behavior happens at a distance rc ∼ vF /(2t), with Fermi velocity vF = µ/kF .

Thus, when the interlayer coupling is strong, we are able to have a small rc, which cuts off the long-range decaying wave function.

III. THREE-FOLD SYMMETRY FROM A TIGHT-BINDING MODEL

In this section, we describe the detailed tight-binding simulation of a YSR state with a threefold symmetry. We take the
1-band model on a triangular lattice with up to fifth nearest neighbor hopping, which faithfully captures the lowest-lying Nb
4d-derived states of 2H-NbSe2 [1], For convenience, we list the detail tight-binding parameters below. The band dispersion has
the following form

ξ(k) = ξ0 + t1(2 cos ξ cos η + cos 2ξ) + t2(2 cos 3ξ cos η + cos 2η) + t3(2 cos 2ξ cos 2η + cos 4ξ)

+ t4(cos ξ cos 3η + cos 5ξ cos η + cos 4ξ cos 2η) + t5(2 cos 3η cos 3ξ + cos 6ξ) (18)

with ξ = 1
2kxa and η =

√
3
2 kya, and a is the triangular lattice spacing. The parameters in this model are listed in Table I.

In the tight-binding model, the electrons hop on the lattice with coordinates rnm = na1 + ma2, where a1 = (1, 0)a and
a2 = (−1,

√
3
2 )a are the two lattice vectors. The Bogoliubov–de Gennes Hamiltonian for the corresponding superconductor can

be written as

H1L(k) = ξ(k)τz + ∆τx, (19)

and we take∆ = 1meV in this work.
The impurity potential can be written as

Vimp(r) = (−JS +Kτz)f(r), (20)

where the first and second terms correspond to magnetic and potential scatterings, respectively. The scalar function f(r)
determines the range of the interaction. In Ref. [1], f(r) = δr,r00 , namely, the impurity potential is only on one of the triangular
site. This produces a YSR state with six-fold degeneracy, see Fig. 3(a) of the main text.

To produce a three-fold symmetric YSR state, we choose f(r) = δr,r00 + δr,r−1,0
+ δr,r01 , which essentially introduces an

impurity potential on the three nearest sites, simulating a hollow site adatom, as shown in Fig.3 (b) of the main text. Using the
general formalism described in Sec. I, one can compute the energy of the YSR state, as well as the corresponding wave function.
To produce Fig. 3(a) and (b) in the main text, we set JS = K = 200meV.
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