Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2020

| 1        | Supporting Information                                                                                                                     |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 2<br>3   | Transparent, flexible MAPbI <sub>3</sub> perovskite microwire array                                                                        |  |  |
| 4        | passivated with ultra-hydrophobic supramolecular assembly                                                                                  |  |  |
| 5        | for stable and high-performance photodetectors                                                                                             |  |  |
| 6        | K. D. M. Rao, <sup>*‡a,b</sup> Mozakkar Hossain, <sup>‡a,b</sup> Umesh, <sup>a</sup> Aniket Roy, <sup>a</sup> Anudeepa Ghosh, <sup>c</sup> |  |  |
| 7        | Gundam Sandeep Kumar, <sup>a</sup> Parikshit Moitra, <sup>a,b</sup> Tapas Kamilya, <sup>a</sup> Somobrata Acharya, <sup>*a</sup>           |  |  |
| 8        | and Santanu Bhattacharya <sup>*a,b,d</sup>                                                                                                 |  |  |
| 9        | <sup>a</sup> School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science,                            |  |  |
| 10       | Jadavpur, Kolkata 700032, India                                                                                                            |  |  |
| 11       | <sup>b</sup> Technical Research Centre, Indian Association for the Cultivation of Science, Jadavpur, Kolkata                               |  |  |
| 12       | 700032, India                                                                                                                              |  |  |
| 13       | <sup>c</sup> School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata                             |  |  |
| 14       | 700032, India                                                                                                                              |  |  |
| 15       | <sup>d</sup> Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India                              |  |  |
| 16       | * E-mail: trckdmr@iacs.res.in, mallik2arjun@gmail.com (K. D. M. R.), sb23in@yahoo.com,                                                     |  |  |
| 17       | sb@iisc.ac.in (S. B.), camsa2@iacs.res.in (S. A.).                                                                                         |  |  |
| 18       | ‡ The authors equally contribute to this work.                                                                                             |  |  |
| 19       |                                                                                                                                            |  |  |
| 20       |                                                                                                                                            |  |  |
| 21       |                                                                                                                                            |  |  |
| 22       |                                                                                                                                            |  |  |
| 23       |                                                                                                                                            |  |  |
| 24<br>25 |                                                                                                                                            |  |  |
| 26       |                                                                                                                                            |  |  |
| 27       |                                                                                                                                            |  |  |

## 4 Table of Contents

| 5  |     |                                                                                                     |
|----|-----|-----------------------------------------------------------------------------------------------------|
| 6  | 1.  | $Concentration \ dependent \ UV-V isible \ spectra \ of \ Tripodal \ L-Phe-C_{11}H_{23}Figure \ S1$ |
| 7  | 2.  | XRD comparison for the different molar ratio of MAI and $\ensuremath{PbI}_2\ensuremath{Figure}$ S2  |
| 8  | 3.  | $Optical\ microscope\ image\ of\ ultra-long\ MAPbI_3\ MW\ arrays\ in\ large\ areaFigure\ S3$        |
| 9  | 4.  | Particle size distribution of ultra-long MAPbI <sub>3</sub> MWFigure S4                             |
| 10 | 5.  | $AFM\ image\ on\ the\ of\ single\ MAPbI_3\ microwire \ldots Figure\ S5$                             |
| 11 | 6.  | $Band-gap \ estimation \ of \ ultra-long \ MAPbI_3 \ MW \ arraysFigure \ S6$                        |
| 12 | 7.  | Transmittance spectra of Supramolecular thin filmFigure S7                                          |
| 13 | 8.  | $PL\ spectra\ of\ MAPbI_3\ MW\ array\ coated\ with\ supramolecular\ thin\ film\ \ldots\ Figure\ S8$ |
| 14 | 9.  | $Statistics \ of \ photo-switching \ ratio \ of \ MAPbI_3 \ MW \ photodetectorFigure \ S9$          |
| 15 | 10. | $Photo-switching \ cycles \ of \ MAPbI_3 \ MW \ array \ based \ photodetectorFigure \ S10$          |
| 16 | 11. | Details about Taut plotSection 1                                                                    |
| 17 | 12. | Details about Linear Dynamic RangeSection 2                                                         |
| 18 | 13. | Details about responsivitySection 3                                                                 |
| 19 | 14. | Details about DetectivitySection 4                                                                  |
| 20 | 15. | Details about External Quantum EfficiencySection 5                                                  |
| 21 | 16. | Details about Noise Equivalent PowerSection 6                                                       |
| 22 | 17. | Details about Rise and Fall time calculationSection 7                                               |
| 23 | 18. | $Literature\ comparison\ table\ of\ MAPbI_3\ based\ photodetectorsTable\ S1$                        |
| 24 | 19. | $Tripodal\ Phe-C_7F_{15}\ molecule\ doping\ in\ Supramolecular\ self-assemblyTable\ S2$             |
| 25 | 20. | Experimental SectionSection 8                                                                       |
| 26 |     |                                                                                                     |





Figure S1: Concentration dependent UV-Visible spectra of Tripodal L-Phe-C<sub>11</sub>H<sub>23</sub>.

In order to investigate the self-assembly process, we performed UV-Visible spectroscopy by 3 varying the concentration of the tripodal L-Phe-C<sub>11</sub>H<sub>23</sub> molecule. From the concentration dependent 4 UV-visible spectra a strong band at 340 nm appeared which is attributed to the  $\pi$ - $\pi$ <sup>\*</sup> transition of 5 6 aromatic rings present in the molecule. On decreasing the concentration, the UV-Vis band at 340 nm showed a blue shift indicating the existence of J-type of aggregates among the  $\pi$ -stacking moieties 7 8 available in the self-assembled nanostructures generated by the tripodal L-Phe-C<sub>11</sub>H<sub>23</sub>. Although it is understood that the molecule, tripodal L-Phe-C<sub>11</sub>H<sub>23</sub>, is hydrophobic in nature on its own, we further 9 added a fluorinated derivative, tripodal L-Phe-C<sub>7</sub>F<sub>15</sub>, into the tripodal L-Phe-C<sub>11</sub>H<sub>23</sub> to enhance the 10 hydrophobicity. The stoichiometry of tripod L-Phe-C<sub>7</sub>F<sub>15</sub> in tripod L-Phe-C<sub>11</sub>H<sub>23</sub> was chosen to be 11 20% of molar ratio, which has optimal transparency and hydrophobicity (see table S2). 12



2 3 Figure S2: XRD patterns at different molar ratios of MAI and PbI<sub>2</sub>.



Figure S3. Optical microscope image of ultra-long MAPbI<sub>3</sub> MW array in  $1.65 \times 1.59$  cm<sup>2</sup>.



Figure S4. (a) FESEM image of single MAPbI<sub>3</sub> microwire at highest magnification. (b) Histogram of particle size distribution in MAPbI<sub>3</sub> microwire.



Figure S5. Atomic force microscopy image of single MAPbI<sub>3</sub> microwire (Scale Bar 4 μm).









Figure S7. Transmittance spectra of Supramolecular thin film on the glass substrate.



**Figure S8.** Photoluminescence spectra of pristine and supramolecular thin-film coated MAPbI<sub>3</sub> MW array.



Device No
 Figure S9. Statistics of photo-switching ratio for different photodetectors fabricated with ultra-long





Figure S10. Photo-switching repeatability of ultra-long MAPbI<sub>3</sub> MW array based photodetector for
800 cycles at 5 V bias.

| 1  | Section 1: Taut Plot                                                                         |  |  |
|----|----------------------------------------------------------------------------------------------|--|--|
| 2  | $(\alpha hv)^{(\frac{1}{n})} = A(hv - E_g)$ (S1)                                             |  |  |
| 3  | Where,                                                                                       |  |  |
| 4  | $\alpha$ = absorption coefficient (cm <sup>-1</sup> )                                        |  |  |
| 5  | hv = photon energy (eV)                                                                      |  |  |
| 6  | $n = \frac{1}{2}$ for direct bandgap semiconductor                                           |  |  |
| 7  | A = constant                                                                                 |  |  |
| 8  | $E_g$ = bandgap energy                                                                       |  |  |
| 9  | Section 2: Linear Dynamic Range (LDR)                                                        |  |  |
| 10 | $LDR = 20log \frac{J_{upper}}{J_{lower}} = 20log \frac{P_{upper}}{P_{lower}} - \dots - (S2)$ |  |  |
| 11 | Where,                                                                                       |  |  |
| 12 | LDR = Linear Dynamic Range                                                                   |  |  |
| 13 | $J_{upper}$ = current density highest light intensity                                        |  |  |
| 14 | $J_{lower}$ = current density lowest light intensity                                         |  |  |
| 15 | $P_{upper}$ = highest light intensity                                                        |  |  |
| 16 | $P_{lower} = lowest light intensity$                                                         |  |  |
| 17 |                                                                                              |  |  |
| 18 |                                                                                              |  |  |
| 19 |                                                                                              |  |  |
| 20 | Section 3: Responsivity $(R_{\lambda})$                                                      |  |  |
| 21 | $R_{\lambda} = \frac{J_{ph}}{P_{Light}} - \dots - (S3)$                                      |  |  |
| 22 | $J_{ph} = \frac{I_{ph}}{A} - \dots - (S4)$                                                   |  |  |
| 23 | Where,                                                                                       |  |  |
| 24 | $R_{\lambda}$ = Responsivity                                                                 |  |  |
| 25 | $J_{ph}$ = photocurrent density                                                              |  |  |
| 26 | $I_{ph} = I_l - I_d = \text{photocurrent}$                                                   |  |  |
| 27 | $I_l = \text{light current}$                                                                 |  |  |
| 28 | $I_d = \text{dark current}$                                                                  |  |  |
| 29 | $P_{Light} = $ light intensity                                                               |  |  |
| 30 | A = active area of the device                                                                |  |  |
| 31 |                                                                                              |  |  |

### Section 4: Detectivity (D)

- 1
- 2 Detectivity can be estimated using the noise current as described by the following equation-S5.
- 3 Detectivity is inversely proportional to the noise equivalent power (NEP), linearly proportional to
- 4 the square root of electrical bandwidth and area of the device (A).

5 
$$D = \sqrt{A \times \Delta f} / NEP \dots$$
 (S5)

- 6  $D = detectivity in cm Hz^{1/2} W^{-1} or Jones$
- 7  $\Delta f = electrical bandwidth in Hz$
- 8 A = device area in  $cm^2$
- 9 NEP = noise equivalent power
- 10 The detector noise can limit the detectivity of the photodetector, which may have contributions from
- 11 generation-recombination noise, shot noise, thermal noise, and 1/f noise. In the present scenario, shot
- 12 noise from the dark current is dominant contribution. Therefore, NEP can be expressed as

13  $NEP = i_{n,s}/R_{\lambda}$ .....(S6)

14  $i_{n,s}$  = shot noise current

15  $R_{\lambda} = responsivity$ 

16 Shot noise current can be approximated using the following equation

17 
$$i_{n,s} = \sqrt{2 \times q \times i_d \times \Delta f}$$
.....(S7)

- 18 q = charge of electron
- 19  $i_d = \text{dark current (nA)}$
- 20  $\Delta f =$  electrical bandwidth in Hz
- 21 Replacing equation (S7), (S6) in equation (S5) we can end up having the simplified Detectivity
- equation as follows.
- 23  $D = R_{\lambda} / \sqrt{2 \times q \times J_d}$ .....(S8)
- 24  $J_d = \text{dark current density in nA/cm}^2$ .

Thus, it is evident that the dark current density  $(J_d)$  is originating from the shot noise current  $(i_{n,s})$ present in the device. So, evaluating the detectivity using the above equation 4 containing dark current density  $(J_d)$  actually considers the shot noise current  $(i_{n,s})$  of the device. The derivation of equation S8 from equation S5 is also well-established in the literature.<sup>1</sup>

29

#### 30

#### Section 5: External Quantum Efficiency (EQE)

$$EQE = \frac{hCR_{\lambda}}{e\lambda}$$
-----(S9)

- 32 Where,
- 33 EQE = External Quantum Efficiency

 $R_{\lambda}$ =responsivity h = Planks Constant c = Velocity of light in Vacuum e = charge of electron  $\lambda$  = wavelength of light Section 6: Noise Equivalent Power (NEP)  $NEP = S_I / R_{\lambda} - \dots - (S10)$  $S_I = \sqrt{\frac{\langle I_{noise}^2 \rangle}{1 \, Hz}}$ (S11) Where, NEP = Noise Equivalent Power  $S_I = RMS$  dark noise spectral density (which corresponds to 1 Hz bandwidth). Inoise = current in darkness  $R_{\lambda}$  = wavelength responsivity Section 7: Rise and fall time calculation  $I = I_0 - I_0 \times e^{(-x/t_r)}$ -----(S12)  $I = I_0 + A_1 \times e^{(-x/t_f)}$ -----(S13) I = current  $I_0 = initial value of current$  $A_1$  = independent variables  $t_r = rise time, t_f = fall time, x = time$ 

| Ref     | Micro/nano         | T <sup>a)</sup> %) | Flexibility         | R <sup>b)</sup>      | D <sup>c)</sup>       | LDR <sup>d)</sup> | Response   |
|---------|--------------------|--------------------|---------------------|----------------------|-----------------------|-------------------|------------|
| No.     | structured         | at 550             |                     | (A/W)                | (Jones)               | (dB)              | time       |
|         | MAPbI <sub>3</sub> | nm                 |                     |                      |                       |                   |            |
| 2       | Network            | ~30                | Yes,10000           | 0.10                 | $1.02 \times 10^{12}$ |                   | 0.3 ms     |
|         | Array              |                    |                     |                      |                       |                   |            |
| 3       | Nanoparticles      | ~60                | Yes                 | $4.9 \times 10^{-3}$ |                       |                   | 50 µs      |
| 4       | Microwires         | No                 | No                  | 0.04                 | 0.6x10 <sup>12</sup>  |                   | 178 µs     |
| 5       | Thin Film          | No                 | No                  | 20.7                 | $6.5 \times 10^{13}$  | 76                | 17 µs      |
| 6       | Nanosheets         | No                 | No                  | 0.03                 |                       |                   | 230 ms     |
| 7       | Nanonets           | No                 | Yes, 50             | 10.33                |                       |                   | 0.02 ms    |
| 8       | Nanowires          | No                 | Yes, 2000           | 410                  | 9.1x10 <sup>12</sup>  |                   | 0.22 ms    |
| 9       | Thin Film          | No                 | No                  |                      | $1.4 \times 10^{12}$  | 73                | 23 µs      |
| 10      | Nanowires          | No                 | No                  | 55x10 <sup>-3</sup>  | $0.5 \times 10^{11}$  |                   | 0.15s      |
| 11      | Microwire          | No                 | Yes,10 <sup>5</sup> | 13.5                 | 5.2x10 <sup>12</sup>  | 114               | 80 µ s     |
|         | Arrays             |                    |                     |                      |                       |                   |            |
| 12      | Microwires         | No                 | Yes, 5000           | 13.8                 | $3.8 \times 10^{12}$  |                   | 50 ms      |
| 13      | Thin Films         | No                 | No                  |                      |                       |                   | 40 ms      |
| 14      | Nanoribbon         | ~65                | Yes                 | 0.04                 | 8.2x10 <sup>11</sup>  |                   | 27 ms      |
|         | Arrays             |                    |                     |                      |                       |                   |            |
| 15      | Nano grating       | Yes                | No                  | 58.5                 |                       |                   |            |
| 16      | Nanowires          | No                 | Yes, 90             | 0.01                 | 3.5x10 <sup>11</sup>  |                   | 12 ms      |
| 17      | Nanowire           | No                 | No                  | 4.95                 | $2x10^{13}$           | 70                | 0.1 ms     |
| Present | Ultra-long         | ~89                | Yes, 1200           | 789                  | 1014                  | 122               | 432/556 µs |
| work    | MAPbI <sub>3</sub> |                    |                     |                      |                       |                   |            |
|         | MW array           |                    |                     |                      |                       |                   |            |

 <sup>a)</sup> Transmittance; <sup>b)</sup> Responsivity; <sup>c)</sup> Detectivity; <sup>d)</sup> Linear Dynamic Range

| Table S2: Tripodal L-Phe-C <sub>7</sub> F <sub>15</sub> molecule doping in the Supramolecular self-assembly of Tripodal |
|-------------------------------------------------------------------------------------------------------------------------|
| L-Phe-C <sub>11</sub> H <sub>23</sub>                                                                                   |

| Sl<br>No. | Supramolecular self-assembly                                                   | Tripodal L-Phe- $C_7F_{15}$ molecule (%) | Transmittance<br>(%) | Contact Angle<br>(Degree) |
|-----------|--------------------------------------------------------------------------------|------------------------------------------|----------------------|---------------------------|
| 1         | Tripodal L-Phe-C <sub>11</sub> H <sub>23</sub>                                 | 0                                        | 98.7                 | 92.1                      |
| 2         | Tripodal L-Phe- $C_{11}H_{23}/C_7F_{15}$                                       | 10                                       | 98.2                 | 102                       |
| 3         | Tripodal L-Phe-C <sub>11</sub> H <sub>23</sub> /C <sub>7</sub> F <sub>15</sub> | 20                                       | 98.2                 | 105                       |
| 4         | Tripodal L-Phe- $C_{11}H_{23}/C_7F_{15}$                                       | 50                                       | 96                   | 105                       |
| 5         | Tripodal L-Phe- $C_{11}H_{23}/C_7F_{15}$                                       | 100                                      | 90                   | 103.3                     |

- 2 Section 8. Experimental Section
- **8.1** Synthesis of tripodal L-Phe-C<sub>11</sub>H<sub>23</sub>/-C<sub>7</sub>F<sub>15</sub> molecule for the Supramolecular Self-assembly:

### Synthetic Scheme



- **1** Synthetic Procedure:
- Compound 1, 2, 3 and 4 were synthesized following the reported procedures.<sup>18-20</sup> The final compound
  5 was synthesized as given below.

### 4 Synthesis of 5.

5 To a solution of **2b** (1 g, 2.7 mmol) in 30 mL of ethanol, **3** (1.2 g, 2.7 mmol) was added and the

6 reaction mixture was refluxed for 12 hr. The reaction mixture was then evaporated under vacuum to

7 yield a crude white powder which was further purified by silica column chromatography using 1%

- 8 MeOH in  $CHCl_3$  as eluent to give the pure desired product.
- <sup>1</sup>H-NMR (CDCl<sub>3</sub>), δ (ppm): 7.76 (s, 3H), 7.30-6.94 (m, 5H), 5.86 (d, 3H), 4.91 (m, 3H), 3.17-3.08 (m, 6H).
- 11 <sup>13</sup>C-NMR (CDCl<sub>3</sub>),  $\delta$  (ppm): 191.17, 164.34, 162.83, 157.48, 132.44, 130.78, 130.30, 129.49, 129.49,
- 12 129.42, 128.69, 128.45, 126.74, 121.26, 116.43, 49.29, 37.73, 33.94, 33.74, 29.65, 26.14, 25.89, 25.28,
- 13 24.99, 24.86.
- 14 **FT-IR** (cm<sup>-1</sup>): 3325.80, 2928.20, 2857.04, 1670.82, 1566.52, 1508.8, 1449.85, 1366.57.
- 15 **MALDI-MS**: m/z calculated for (M<sup>+</sup>+K) 2168.1027; Observed 2167.9870.
- 16

### 17 **8.2** Characterization of the Supramolecular Self-assembly:

<sup>1</sup>H NMR studies were carried out on a Bruker DPX 400/500 MHz NMR spectrometer. Infrared
(IR) spectra were recorded using a Perkin Elmer Spectrum BX FT-IR spectrometer. MALDI spectrum
is recorded in Bruker MALDI-TOF New ultrafleXtreme spectrometer. Absorption spectra were taken
using Shimadzu UV-2450 spectrophotometer after appropriate baseline correction. AFM imaging of
the samples were performed with an Asylum Research MFP-3D AFM in tapping mode using
AC160TS silicon probes, with nominal tip radii <10 nm. Energy minimisation of the molecules were</li>
calculated by B3LYP/6-31G\* method using Gaussian-09 software.<sup>21</sup>

- 25
- 26
- 27

#### 8.3 Fabrication ultra-long long MAPbI<sub>3</sub> MW arrays:

2 The initial precursors methylammonium iodide (MAI) (Luminescence Technology Corp.) and lead iodide (PbI<sub>2</sub>) were purchased from Sigma-Aldrich and used as received. The metal stencils consist 3 of continuous and repetitive linear apertures having holes of 13 µm width and length 2 cm with pitch 4 138 µm. These were purchased from Harshini Industries from Bangalore. Glass substrates were 5 cleaned by washing in soap water, dipping in piranha solution (4:1, H<sub>2</sub>SO<sub>4</sub>:H<sub>2</sub>O<sub>2</sub>) for 20 minutes and 6 followed by ultrasonication in Milli-Q water, acetone and isopropanol for 10 minutes each, 7 respectively. The Glass/PET substrates were conformally attached with metal stencils and placed 8 inside physical vapour deposition system (Hind High Vacuum Company Private Limited: 9 model:12A4D). The precursors MAI and PbI<sub>2</sub> were placed in two different molybdenum boats in 10 1:0.14 molar ratio (MAI = 145 mg, PbI<sub>2</sub> = 58 mg) inside a vacuum chamber maintained at ~ (1-3)  $\times 10$ 11 <sup>-6</sup> m. bar pressure. PbI<sub>2</sub> and MAI were evaporated sequentially (First PbI<sub>2</sub> followed by MAI) by 12 controlling the current from 0 A to 33 A and maintaining the deposition rate below 5Å/s. The samples 13 are annealed at 110° C for 30 minutes in N<sub>2</sub> atmosphere, after pulling out from the vacuum chamber. 14 The supramolecular solution is prepared by mixing 18 mg tripodal L-phe- $C_{11}$ -/- $C_7F_{15}$  molecule in 1 15 ml toluene. The mixture is then dipped in hot water bath followed by ultrasonication for 2 min. The 16 resultant supramolecular solution is spin-coated (Apex Instruments: SpinNXGP1) on top of the 17 MAPbI<sub>3</sub> MW array with 1000 RPM for 60 sec. 18

19

# **8.4 Photodetector Device Fabrication**

ITO gap electrodes on a glass substrate with a channel width of 20 µm and length of 2 mm are 20 fabricated by photolithography followed by etching ITO in gap region. The ITO electrodes used for 21 device fabrication demonstrated a transmittance of 90 %. The photocurrent and current-voltage 22 characteristic measurements were performed with a TTPx Lakeshore probe station connected to a 23 24 Keithley 4200/2634B semiconductor characterization system. The intensity of the white light source is modulated using light filters. For responsivity related measurements F&S Bondtech 40546AK5901 25 based wire bonder equipped with Leica S6 microscope is used to extract electrical connections from 26 a single MAPbI<sub>3</sub> microwire fabricated over Au gap electrode with width 0.9 µm. The wavelength 27

dependent photocurrent measurements were performed using various LEDs different wavelengths. 1 The bandwidth measurement was carried out by modulating white LED frequency from 10 Hz to 8 2 kHz using a function generator (Scientific Instruments, SM5070). While modulating LED light 3 photoresponse of the MAPbI<sub>3</sub> photodetector is recorded with an oscilloscope (Scientific Instruments, 4 SMO702). Long-term frequency domain measurements were carried out by modulating a red laser 5 diode (LD-RL-6-5v, ~3 mW, 650 nm) with Thorlabs optical chopper (MC2000B-EC), and 6 oscilloscope (Scientific Instruments, SMO702). For flexibility measurements, Al gap electrodes on 7 PET substrate with channel width of 40 µm and channel length of 2 mm are using a shadow mask and 8 9 physical vapour deposition. These devices are placed on curved surfaces having bending radii(r) 10 mm, 8 mm, 6 mm. Contact angle measurement system (Ossila Contact Angle Goniometer, L2004A1) 10 11 was used to evaluate the hydrophobicity nature.

#### 12 8.5 Characterization of MAPbI<sub>3</sub> MW array

MAPbI<sub>3</sub> MW arrays are characterized after depositing the materials on glass/PET substrate. 13 XRD diffraction is performed in PAN analytical (X'Pert PRO, 40 kV, 30 mA, wavelength ~ 0.154 14 15 nm) and Bruker AXS D8 Advanced equipment (40 kV, 40 mA, wavelength ~ 0.15406 nm) with Cu Ka radiation. Optical microscope images are captured in Olympus microscope (CKX-41) and Leica 16 DMi8 fluorescent microscope. Morphology of the MAPbI<sub>3</sub> wire and supramolecular is visualised 17 using AFM (Vecco, di CP-II). Image of single MAPbI<sub>3</sub> wire-based device as well as interconnectivity 18 of MAPbI<sub>3</sub> was visualized using FESEM (JEOL JSM-7500F). UV-vis absorbance/transmittance 19 measurements are carried out by using Varian Cary 5000 UV-vis-NIR spectrophotometer. The 20 transmittance measurements throughout this study are performed with respect to the glass/PET 21 substrate. Photoluminescence (PL) spectra are collected by using the RAMAN spectrophotometer 22 (Raman Triple spectrometer Jobin-Yvon T64000) by exciting the sample with Nd:YAG green laser 23 (532.5 nm, ~ 10 µW power). PL mapping image is captured by using Leica DMi8 fluorescent 24 microscope after exciting the material with 568 nm green laser. 25

- 26
- 27

| 1 |
|---|
| т |

- 2
- 3

#### 4 REFERENCES

- 5 1. J. Miao and F. Zhang, *Laser Photonics Rev.*, 2019, **13**,1800204.
- 6 2. H. Deng, X. Yang, D. Dong, B. Li, D. Yang, S. Yuan, K. Qiao, Y.-B. Cheng, J. Tang and H.
  7 Song, *Nano Lett.*, 2015, 15, 7963-7969.
- 8 3. Y. P. Jeon, S. J. Woo and T. W. Kim, *Appl. Surface Sci.*, 2018, **434**, 375-381.
- 9 4. S. Li, Y. Li, Z. Shi, L. Lei, H. Ji, D. Wu, T. Xu, X. Li and G. Du, *Sol. Energy Mater. Sol. Cells*,
  2019, **191**, 275-282.
- 11 5. L. Ji, H.-Y. Hsu, J. C. Lee, A. J. Bard and E. T. Yu, *Nano Lett.*, 2018, **18**, 994-1000.
- 12 6. P. Li, B. N. Shivananju, Y. Zhang, S. Li and Q. Bao, *J. Phys. D: Appl. Phys.*, 2017, **50**, 094002.
- 13 7. W. Wang, Y. Ma and L. Qi, *Adv. Funct. Mater.*, 2017, 27, 1603653.
- Q. Zhou, J. G. Park, R. Nie, A. K. Thokchom, D. Ha, J. Pan, S. I. Seok and T. Kim, *ACS Nano*,
   2018, **12**, 8406-8414.
- X. Fu, N. Dong, G. Lian, S. Lv, T. Zhao, Q. Wang, D. Cui and C.-P. Wong, *Nano Lett.*, 2018, 17
   18, 1213-1220.
- 18 10. X. Zhang, C. Liu, G. Ren, S. Li, C. Bi, Q. Hao and H. Liu, *Nanomaterials*, 2018, **8**, 318.
- W. Deng, X. Zhang, L. Huang, X. Xu, L. Wang, J. Wang, Q. Shang, S.-T. Lee and J. Jie, *Adv. Mater.*, 2016, **28**, 2201-2208.
- 21 12. Y. Chen, J. Zhang, J. Zhou, Y. Chu, B. Zhou, X. Wu and J. Huang, *Adv. Optical Mater.*, 2018,
  6, 1800469.
- Y. Zhang, J. Du, X. Wu, G. Zhang, Y. Chu, D. Liu, Y. Zhao, Z. Liang and J. Huang, *ACS Appl. Mater. Interfaces*, 2015, 7, 21634-21638.
- 25 14. S. Lim, M. Ha, Y. Lee and H. Ko, *Adv. Optical Mater.*, 2018, **6**, 1800615.
- 26 15. H. Wang, R. Haroldson, B. Balachandran, A. Zakhidov, S. Sohal, J. Y. Chan, A. Zakhidov and
- 27 W. Hu, *ACS Nano*, 2016, **10**, 10921-10928.

- 1 16. D. Wu, H. Zhou, Z. Song, R. Liu and H. Wang, J. Mater. Chem. C, 2018, 6, 8628-8637.
- L. Gao, K. Zeng, J. Guo, C. Ge, J. Du, Y. Zhao, C. Chen, H. Deng, Y. He, H. Song, G. Niu
  and J. Tang, *Nano Lett.*, 2016, 16, 7446-7454.
- 4 18. A. Pal, Y. K. Ghosh and S. Bhattacharya, *Tetrahedron*, 2007, **63**, 7334-7348.
- R. Ongaratto, N. Conte, C. R. Montes D'Oca, R. C. Brinkerhoff, C. P. Ruas, M. A. Gelesky
  and M. G. Montes D'Oca, *New J. Chem.*, 2019, 43, 295-303.
- 7 20. D. C. Tahmassebi and T. Sasaki, J. Org. Chem., 1994, 59, 679-681.
- P. Moitra, K. Kumar, P. Kondaiah and S. Bhattacharya, *Angew. Chem. Int. Ed.*, 2014, 53, 11131117.