Supporting Information

A Multidimensional Nanostructural Design towards Electrochemically Stable

and Mechanically Strong Hydrogel Electrodes

Wei Zhang, ' †* Jing Ma, † Wenjuan Zhang, Peigen Zhang, Wei He, Jian Chen, ZhengMing Sun*

[.] Prof. W. Zhang, J. Ma, Prof. P. G. Zhang, Prof. W. He, Prof. Z. M. Sun
[.] Jiangsu Key Laboratory of Advanced Metallic Materials
[.] School of Materials Science and Engineering
Southeast University, Nanjing, 211189, PR China
E-mail: w69zhang@seu.edu.cn; zmsun@seu.edu.cn
Prof. W. J. Zhang
State Key Laboratory for Advanced Processing and Recycling of Non-ferrous Metals
Lanzhou University of Technology, Lanzhou, 730050, PR China

Part 1. Calculation

Mechanical Test

The stress (σ) (MPa), strain (ϵ) (100%), elastic modulus (*E*) (MPa) and deformation energy (W) (MJ m⁻³) of all MXene-based hydrogels were calculated according to eqs 1,2,3 and 4:

$$\sigma = \frac{P}{A}(1)$$

$$\varepsilon = \frac{\Delta L}{L} \times 100 (2)$$

$$E = \frac{\sigma}{\varepsilon}(3)$$

$$W = \int_{0}^{\varepsilon} \sigma d\varepsilon(4)$$

where P(N) is the maximum load along the direction of applied force at fracture, $A(mm^2)$ is the cross-sectional area of the fracture. ΔL is breaking elongation and L is the original length.

Electrochemical Characterization

The electrochemical performances of all MXene-based hydrogel electrodes were performed in a three-electrode system. The work electrode was MXene-based hydrogels (size of 10 $mm \times 10 mm \times 2 mm$), the reference electrode was Hg/Hg₂SO₄ electrode (Shanghai Lei Magnetism Instrument Co., Ltd.), and the counter electrode was a titanium plate, respectively.

The specific capacitance (C_p) (F·g⁻¹) of all electrodes were calculated according to their GCD curves and derived from eq 5:

$$C_{p} = \frac{I \times \Delta t}{m \times \Delta V} (5)$$

where *I* is the discharge current, Δt is the discharge time of CGD curves, *m* is the mass of active materials in single working electrodes, and ΔV is the voltage change during discharge.

For flexible symmetric solid-state supercapacitors, the electrochemical performance were measured in a two electrode system. The cell-specific capacitance (C_{cell}) (F·g⁻¹) of all solid-state supercapacitor devices were calculated from their CGD curves according to eq 6:

$$C_{cell} = \frac{I \times \Delta t}{M \times \Delta V} (6)$$

where *I* is the discharge current, Δt is the discharge time of CGD curves, *m* is the mass of active materials in two pieces working electrodes, and ΔV is the voltage change during discharge.

The energy density (E_{cell}) and power density (P_{cell}) of the supercapacitor devices were calculated based on eqs 7 and 8:

$$E_{cell} = \frac{C_{cell} \times (\Delta V)^2}{2 \times 3.6} (7)$$

$$P_{cell} = \frac{E_{cell} \times 3600}{\Delta t} (8)$$

where E_{cell} is the energy density, P_{cell} is the power density and C_{cell} is the cell-specific capacitance, the ΔV is the voltage change during discharge, the Δt is the discharge time from GCD curves.

Part 2. Figures

Figure S1: SEM images of MXene-PVA hydrogels with different MXene concentrations: (a) 0.2 mg cm^{-3} ; (b) 0.4 mg cm^{-3} ; and (c) 2.0 mg cm^{-3} .

Figure S2. (a) XRD patterns of the PVA, PPy, MXene-PVA, MXene/PPy-PVA and MXene; (b) FTIR spectrum of the MXene/PPy-PVA hydrogel.

Figure S3. (a) The Maximum tensile stress of MXene-PVA hydrogels with different MXene concentrations, (b) Compression stress-strain curves of PVA and different concentration MXene-PVA hydrogels

Figure S4. Electrochemical characterizations of 0.2 mg cm⁻³ MXene hydrogel electrodes: (a) CV, (b) charge/ discharge, and (c) EIS curves.

Figure S5. Electrochemical characterizations of 0.4 mg cm⁻³ MXene hydrogel electrodes: (a) CV, (b) charge/ discharge, and (c) EIS curves.

Figure S6. Electrochemical characterizations of 2 mg cm⁻³ MXene hydrogel electrodes: (a) CV, (b) charge/ discharge, and (c) EIS curves.

Figure S7. Specific capacitance and volume capacitance of MXene-PVA electrodes with different MXene concentration.

Figure S8. Electrochemical characterizations of MXene/PPy-PVA hydrogel electrodes: (a) CV, (b) charge/ discharge, (c) EIS curves, and (d) The cycle life and coulombic efficiency.

Figure S9. EIS curves of the assembled flexible supercapacitor.

Figure S10. Photographs of PVA and MXene/PPy-PVA hydrogels durying tensile tests: (a), (b) and (c) were PVA hydrogels; (d), (e) and (f) were MXene/PPy-PVA hydrogels.

Part 3. Tables

Table S1. Mass specific capacitance and tensile strength of different hydrogel electrode materials

Hydrogel electrodes	Specific capacitance (F g ⁻¹)	Tensile strength (MPa)	Ref.
PANI@CNF-PVA	201.6 at 1 A g ⁻¹	0.032	1
PVAB@CNT-CNF	117.1 at 1 A g ⁻¹	0.093	2
PANI	750 at 1 A g^{-1}	0.600	3
Polythiophene	135 at 1 A g^{-1}	160	4
PANI@CNTs@PLA	510.3 at 1 A g^{-1}	18.7	5
CTS@SA	234.6 at 1 A g^{-1}	0.290	6
PANI@GO	115.2 at 1 A g^{-1}	351.9	7
Graphene	175 at 1 A g^{-1}	0.450	8
MXene@PPy-PVA	614 at 1 A g^{-1}	10.3	our work

Part 4. Movies

For the movies, Movie S1 and S2 show the stretching properties of pure PVA and MXene-PVA hydrogel cylinders. The pure PVA hydrogel can be broken easily, while the MXene-PVA shows strong mechanical strength. Movie S3 and S4 show the cyclic compression of pure PVA and MXene-PVA hydrogel cylinders. The pure PVA hydrogel can be broken easily, while the MXene-PVA shows strong compression strength.

References

- [1] J. Han, Q. Ding, C. Mei, Q. Wu, Y. Yue, X. Xu, *Electrochimica Acta* 2019, 318, 660.
- [2] J. Han, H. Wang, Y. Yue, C. Mei, J. Chen, C. Huang, Q. Wu, X. Xu, Carbon 2019, 149, 1.
- [3] H. Guo, W. He, Y. Lu, X. Zhang, Carbon 2015, 92, 133.
- [4] Q. Chen, X. Wang, F. Chen, N. Zhang, M. Ma, Chem. Eng. J. 2019, 368, 933.
- [5] Q. Wang, H. Wang, P. Du, J. Liu, D. Liu, P. Liu, *Electrochimica Acta* 2019, 294. 312.
- [6] J. Zhao, Y. Chen, Y. Yao, Z.-R. Tong, P.-W. Li, Z.-M. Yang, S.-H. Jin, J. Power Sources 2018, 378, 603.
- [7] C. Wu, T. Zhou, Y Du, S. Dou, H. Zhang, L. Jiang, Q. Cheng, Nano Energy 2019, 58, 517.
- [8] Y. Xu, K. Sheng, C. Li, G. Shi, ACS Nano 2010, 4, 4324.