In Situ Synthesis of Nickel Concentration Gradient Structure Promising Superior Electrochemical Properties of Ni-Rich LiNi_{0.8}Co_{0.15}Al_{0.05}O₂ at High Cut-Off Voltage

Kang Wu^a, Junyang Wang^b, Qi Li^c, Yuqiang Yang^c, Xin Deng^c, Rongbin Dang^c, Meimei Wu^d, Zhijian Wu^a, Xiaoling Xiao^c* and Xiqian Yu^b*

^{*a*} Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences.

^b Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,
 Chinese Academy of Sciences, Beijing, 100190 China.

^c College of Materials Science and Opto-electronic Technology, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

^{*d*} Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China.

* Corresponding Author: E-mail: xlxiao@ucas.ac.cn, Tel. +86 10 8825 6655, xyu@iphy.ac.cn

Fig. S1 XRD patterns of P-NCA and NCG-NCA ($x\% C_4H_8N_2O_2$) materials and XRD

ICDD card for P-NCA.

Fig. S2 X-ray photoelectron spectroscopy (XPS) spectra for the surface elements of the P-NCA and NCG-NCA (7% C₄H₈N₂O₂) materials.

Fig. S3 The refined crystal ball and stick model structure of each material. The purple sphere is Li, the red sphere is O, the blue sphere is Ni/Co/Al. a) P-NCA, b) NCG-NCA (3% C₄H₈N₂O₂), c) NCG-NCA (5% C₄H₈N₂O₂), d) NCG-NCA (7% C₄H₈N₂O₂).

Fig. S4 The Rietveld refinement results of the X-ray diffraction patterns of a) P-NCA,
b) NCG-NCA (3% C₄H₈N₂O₂), c) NCG-NCA (5% C₄H₈N₂O₂), d) NCG-NCA (7%

 $C_4H_8N_2O_2$).

Fig. S5 a) Plots of specific energy vs. cycle number for the P-NCA and NCG-NCA (7% $C_4H_8N_2O_2$) electrodes at 1C. b) Capacity vs. voltage curves for the pristine P-NCA and NCG-NCA (7% $C_4H_8N_2O_2$) electrodes at the 100th cycle. Discharge capacity vs. voltage curve at the 3rd, 50th, 100th and 200th cycle at 1C for P-NCA c) and NCG-NCA (7% $C_4H_8N_2O_2$) d). The inset histograms suggest variation of the voltage after

different cycles.

Fig. S6 a) Nyquist plots for the pristine P-NCA and NCG-NCA (7% $C_4H_8N_2O_2$) electrodes before cycling. b) The mathematical relationship between Z' and $\omega^{-1/2}$.

Fig. S7 Related equivalent circuit.

Fig. S8 The Scanning electron microscopy images of a,c) P-NCA and b,d) NCG-NCA

(7% C₄H₈N₂O₂) materials collected at different stages: a,b) as-synthesized, c,d) after

100 cycles at 1C.

Sample	P-NCA	NCG-NCA
$Ni^{2+} 2p_{3/2} (eV)$	854.982	854.762
$Ni^{3+} 2p_{3/2} (eV)$	855.98	855.819
$Al^{3+} 2p_{3/2} (eV)$	68.0474	67.8449
$Co^{3+}2p_{3/2}(eV)$	780.09	780.549
Peak area/Ni ²⁺ $2p_{3/2}$ (eV)	5206	5113.9
Peak area/Al ³⁺ $2p_{3/2}$ (eV)	1807.8	2619.8
Peak area/Co ³⁺ 2p _{3/2} (eV)	1794.8	2601.9

Table S1 The electron binding energy and peak area of the elements of P-NCA and

NCG-NCA (7% $C_4H_8N_2O_2$) materials.

Table S2 The cell parameters derived from Rietveld refinement of P-NCA, 3%

	Samples	a(Å)	c(Å)	V(Å ³)	Chi2	d-spacing(Å)
	P-NCA	2.86650	14.16889	100.825	3.68	2.448
3	3% C ₄ H ₈ N ₂ O ₂ -	2.86695	14.17180	100.878	3.65	2.465
	NCA					
4	5% C ₄ H ₈ N ₂ O ₂ -	2.86691	14.17038	100.865	2.95	2.462
	NCA					
7	7% C ₄ H ₈ N ₂ O ₂ -	2.86692	14.17114	100.871	3.67	2.451
	NCA					

C₄H₈N₂O₂-NCA, 5% C₄H₈N₂O₂-NCA and 7% C₄H₈N₂O₂-NCA.

Table S3 Pawley refinement results of P-NCA and NCG-NCA (7% C₄H₈N₂O₂)

		materials.		
Sample	a (Å)	c (Å)	Rwp (%)	GOF
P-NCA	2.868892	14.178110	1.95	1.66
P-NCA-cycled	2.858419	14.230938	2.06	1.31
NCG-NCA	2.869698	14.178716	1.949	1.62
NCG-NCA-cycled	2.848906	14.176133	1.85	1.13

materials.				
Samples	P-NCA	NCG-NCA		
Rele (Ω)	6.78	2.38		
Rct (Ω)	406.04	333		
Estimated error/Rele (%)	4.55	8.293		
Estimated error/Rct (%)	1.01	1.783		

Table S4 The simulation results of EIS of the P-NCA and NCG-NCA (7% $C_4H_8N_2O_2$)

Table S5 The linear fit for Z' (Y-axis) and $\omega^{-1/2}$ (X-axis) in low frequency simulating

two lines of the P-NCA and NCG-NCA (7% $C_4H_8N_2C$	ν_2) materials.
---	----------------------

Equation	Y=a	a+b*x
Plot	P-NCA	NCG-NCA
Intercept	232.49	174.60
Slope	378	291.82