Supplementary Information

Enhanced Carrier Transport by Transition Metal Doping in

WS₂ Field Effect Transistors

Maomao Liu,¹ Sichen Wei,² Simran Shahi,¹ Hemendra Nath Jaiswal,¹

Paolo Paletti,³ Sara Fathipour,³ Maja Remskar,⁴ Jun Jiao,⁵

Wansik Hwang,^{6†} Fei Yao,^{2†} and Huamin Li^{1†}

¹ Department of Electrical Engineering, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA

² Department of Materials Design and Innovation, University at Buffalo, the State University of New York, Buffalo, NY 14260, USA

³ Department of Electrical Engineering, University of Notre Dame, South Bend, IN 46556, USA ⁴ Department of Solid State Physics, Jozef Stefan Institute, Ljubljana, 1000, Slovenia

⁵ Center for Electron Microscopy and Nanofabrication, Portland State University, Portland, OR

97207, USA

⁶ Department of Materials Engineering, Korea Aerospace University, Goyang 10540, Republic of Korea

FIGURES

Fig. S1 Optical microscopy images of the representative devices in this work, including (a) pristine WS_2 FET, (b) Cu-doped WS_2 FET, (c) Cu-contact WS_2 FET, (d) pristine WS_2 TLM device, (e) Cu-doped WS_2 TLM device, and (f) Cu-contact WS_2 TLM device. Scale bar: 10 μ m. It is noted that both the FET and TLM devices have the non-uniform channel geometry and thus the inconsistent contact conditions. We calculated the current density with the averaged the channel width for each measurement to minimize these deviations.

Fig. S2 *IV* characteristics of WS₂ FETs at on state ($V_G = 30$ V) based on the output curves. Various models, including (a) Schottky emission model, (b) PF emission model, (c) TFL/SCL model, (d) FN tunneling model, and (e) direct tunneling model were used for comparative investigation. (f) Energy band diagram at the metal-semiconductor interface illustrates the mechanisms of the carrier injection and transport.

Fig. S3 Room-temperature TLM measurement at $V_D = 1$ V for (a) pristine WS₂, (b) Cudoped WS₂, and (c) Cu-contact WS₂. Here R_{total} is the total resistance and L_{TLM} is the spacing distance ranging from 0.5 to 3 µm.

Fig. S4 The transfer characteristics for (a) 26 pristine WS₂ FETs, (b) 29 Cu-doped WS₂ FETs, and (c) 39 Cu-contact WS₂ FETs.

Fig. S5 (a, b) SEM and EDX elemental mapping of a synthesized pristine WS_2 flake and a Cu-doped WS_2 flake transferred on the carbon tape surface. Scale bar: 2 μ m. (c-e) Raman spectroscopy of the pristine and Cu-doped WS_2 .

Fig. S6 AFM mapping image of a back-gate FET using the exfoliated Cu-doped WS_2 flake as the channel (inset) and the cross-section profile of the channel.