Electronic Supplementary Information

Multi-channel V doped CoP hollow nanofibers for high-performance hydrogen

evolution reaction electrocatalyst

Ruolin Zhu[†], Fangfang Chen[†], Jiayu Wang, Yuyan Song, Jianlin Cheng, Mao Mao, Huijun Ma, Jinjun Lu*, and Yongliang Cheng*

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry

of Education, College of Chemistry and Materials Science, Northwest University, Xi'an

710069, China

[†] These authors contributed equally to this work

* Correspondence authors: jjlu@nwu.edu.cn (J.J. Lu) <u>ylcheng@nwu.edu.cn</u> (Y.L.

Cheng)

Fig. S1 (a) low magnification and (b) high magnification SEM images for precursor fiber of MC-V-CoP.

Fig. S2 XRD patterns of V doped Co₃O₄

Fig. S3 (a) low magnification and (b) high magnification SEM images of MC-V-Co₃O₄ nanofiber, (c) low magnification and (d) high magnification TEM images of MC-V-Co₃O₄ nanofiber, (e) element mapping of MC-V-Co₃O₄ nanofiber.

Fig. S4 (a) low magnification and (b) high magnification SEM images of precursor nanofibers for NMC-V-CoP.

Fig. S5 (a) low magnification and (b) high magnification SEM images of NMC-V-CoP nanofiber, (c) low magnification and (d) high magnification TEM images of MC-V-CoP nanofiber, (e) element mapping of MC-V-CoP nanofiber.

Fig. S6 (a) N_2 adsorption-desorption curves and (b) corresponding pore size distribution of MC-V-Co₃O₄, MC-V-CoP and NMC-V-CoP.

Fig. S7 EPR spectrum of MC-CoP and MC-V-CoP

Fig. S8 LSV polarization curves of MC-V-CoP in alkaline medium with different loading weight at the scan rate of 5 mV s^{-1} .

Fig. S9 LSV polarization curves of MC-V-Co₃O₄ and MC-V-CoP in alkaline medium at the scan rate of 5 mV s⁻¹.

Fig. S10 CV curves of NMC-V-CoP, MC-CoP and MC-V-CoP in alkaline medium with different scan rates.

Fig. S11 (a) LSV polarization curves, (b) overpotential at different current densities, and (c) EIS Nyquist plots of MC-CoP with different V doping amount.

Fig. S12 (a) SEM and TEM image of MC-V-CoP nanofiber fabricated by the weight ratio of PAN to PS as 2:1.

Fig. S13 (a) SEM and TEM image of MC-V-CoP nanofiber fabricated by the weight ratio of PAN to PS as 2:3.

Fig. S14 (a) LSV polarization curves and (b) EIS Nyquist plots of MC-V-CoP nanofiber fabricated by different addition ratio of PA N and PS.

Fig. S15 CV curves of NMC-V-CoP, MC-CoP and MC-V-CoP in neutral medium with different scan rates.

Fig. S16 EIS Nyquist plots of MC-V-CoP nanofiber in neutral medium.

Fig. S17 (a) SEM image, (b) TEM image and (c) element mapping of MC-V-CoP nanofiber after cycling stability test in alkaline medium.

Fig. S18 (a) SEM image, (b) TEM image and (c) element mapping of MC-V-CoP nanofiber after cycling stability test in neutral medium.

Fig. S19 High-resolution XPS spectrum of MC-V-CoP after long-term test in (I) alkaline and (II) neutral medium, (a) Co 2p, (b) P 2p, (c) V 2p.

Sample	Specific surface area	Pore volume	Mean pore size
	$(m^2 g^{-1})$	$(cc g^{-1})$	(nm)
MC-V-Co ₃ O ₄	101	0.371	14.846
MC-V-CoP	39.9	0.255	2.976
NMC-V-CoP	38.52	0.115	3.322

 Table S1 The comparison of specific surface, pore volume and mean pore size of

 different electrocatalysts

Electrocatalyst	Loading	Current density	Overpotential	Reference
	$(mg cm^{-2})$	(mA cm ²)	(mV)	
MC-V-CoP/GCE	1	10	65	This work
		100	132	
		200	161	
		300	189	
NiCoP nanocone arrays/NF	8	10	104	1
		100	197	
NiCoP/CC	2	10	62	2
Nicol/ee		100	158	
$\frac{Co_{0.9}S_{0.58}P_{0.42}}{/GCE}$		10	139	3
		10	80	4
COP/NPC/IF		200	162	
$\begin{array}{c} (Co_{1-x}Ni_x)(S_{1-y}P_y)_2 \\ /G/GCE \end{array}$	3	10	117	5
Zn _{0.08} Co _{0.92} P/TM	1.52	10	67	6
NiFe LDH @NiCoP/NF	2	10	120	7
CoP@a-CoO/CC	1.5	10	132	8
Ni-Co-P HNB/NF	2	10	107	9
CoP/Ni ₅ P ₄ /CoP		10	71	
/NF		100	140	10
Fe-CoP UNSs/NF	1.4	10	67	11
		100	148	
	2	10	40	12
Mo-CoP/CC		100	130	
	1	10	121	13
$C-Co_xP/GCE$		50	173	
W-CoP NAs/CC	10	10	94	14
NiCoP-CoP	1.5	10	73	
nanowires/NF		100	183	15
N-NiCoP/NCF	2.08	10	78	16
MoP/CC	2.5	10	187	17
$(Fe_xNi_{1-x})_2P/NF$	1.0	10	90	18
CoP/Graphene/CP	2.5	10	83	19
Ni _x P/NF		10	71	20

Table S2 Comparison of HER activity of MC-V-CoP nanofiber with other reportedphosphide-based HER electrocatalysts in 1.0 M KOH electrolyte.

Note: GCE glass carbon electrode, NF: Ni foam, CC: carbon cloth, TF: Ti foil, TM: Ti mesh, NCF: Ni-Co foam. CP: carbon paper

Electrocatalyst	Loading (mg cm ⁻²)	Current density (mA cm ⁻²)	Overpotential (mV)	Reference
		10	106	
MC-V-CoP	1.0	100	243	This work
		300	540	
W-CoP NAs/CC	10	10	102	14
FLNPC@MoPNC /MoP-C/CC	2.42	10	106	21
MoP NA/CC	2.5	10	187	17
CoP NPs@NPC	1.4	10	423	22
Ni ₂ S ₃ /NF	1.6	10	170	23
FeP/CC	1.5	10	202	24
CoO/CoSe ₂	2	10	337	25

 Table S3 Comparison of HER activity of MC-V-CoP nanofiber with other reported

 phosphide-based HER electrocatalysts in 1.0 M PBS electrolyte.

Note: GCE glass carbon electrode, NF: Ni foam, CC: carbon cloth, TM: Ti mesh,

Reference

- J. Z. Li, G. D. Wei, Y. K. Zhu, Y. L. Xi, X. X. Pan, Y. Ji, I. V. Zatovsky and W. Han, J. Mater. Chem. A, 2017, 5, 14828-14837.
- C. Du, L. Yang, F. L. Yang, G. Z. Cheng and W. Luo, ACS Catal., 2017, 7, 4131-4137.
- Z. Dai, H. Geng, J. Wang, Y. Luo, B. Li, Y. Zong, J. Yang, Y. Guo, Y. Zheng, X. Wang and Q. Yan, ACS Nano, 2017, 11, 11031-11040.
- X. K. Huang, X. P. Xu, C. Li, D. F. Wu, D. J. Cheng and D. P. Cao, Adv. Energy Mater., 2019, 9, 1803970.
- H. J. Song, H. Yoon, B. Ju, G. H. Lee and D. W. Kim, *Adv. Energy Mater.*, 2018, 8, 1802319.
- T. Liu, D. Liu, F. Qu, D. Wang, L. Zhang, R. Ge, S. Hao, Y. Ma, G. Du, A. M. Asiri,
 L. Chen, X. Sun, *Adv. Energy Mater.*, 2017, 7, 1700020.
- 7. H. J. Zhang, X. P. Li, A. Hahnel, V. Naumann, C. Lin, S. Azimi, S. L. Schweizer, A. W. Maijenburg and R. B. Wehrspohn, *Adv. Funct. Mater.*, 2018, 28, 1706847-n/a.
- 8. J. Yu, Y. Zhong, X. Wu, J. Sunarso, M. Ni, W. Zhou and Z. Shao, Adv. Sci., 2018, 5,

1800514.

- E. L. Hu, Y. F. Feng, J. W. Nai, D. Zhao, Y. Hu and X. W. Lou, *Energy Environ*. Sci., 2018, 11, 872-880.
- I. K. Mishra, H. Q. Zhou, J. Y. Sun, F. Qin, K. Dahal, J. M. Bao, S. Chen and Z. F. Ren, *Energy Environ. Sci.*, 2018, **11**, 2246-2252.
- Y. Li, F. Li, Y. Zhao, S.-N. Li, J.-H. Zeng, H.-C. Yao and Y. Chen, J. Mater. Chem. A, 2019, 7, 20658-20666.
- C. Guan, W. Xiao, H. Wu, X. Liu, W. Zang, H. Zhang, J. Ding, Y. P. Feng, S. J. Pennycook and J. Wang, *Nano Energy*, 2018, 48, 73-80.
- 13. T. S. Kim, H. J. Song, J. C. Kim, B. Ju and D. W. Kim, *Small*, 2018, **14**, e1801284.
- X. Wang, Y. Chen, B. Yu, Z. Wang, H. Wang, B. Sun, W. Li, D. Yang and W. Zhang, *Small*, 2019, **15**, e1902613.
- H. Liu, X. Ma, H. Hu, Y. Pan, W. Zhao, J. Liu, X. Zhao, J. Wang, Z. Yang, Q. Zhao, H. Ning and M. Wu, ACS Appl. Mater. Interfaces, 2019, 11, 15528-15536.
- R. Zhang, J. Huang, G. L. Chen, W. Chen, C. S. Song, C. R. Li and K. Ostrikov, *Appl. Catal. B Environ.*, 2019, **254**, 414-423.
- 17. Z. Pu, S. Wei, Z. Chen and S. Mu, Appl. Catal. B Environ., B 2016, 196, 193-198.
- W. Zhang, Y. Zou, H. Liu, S. Chen, X. Wang, H. Zhang, X. She and D. Yang, Nano Energy, 2019, 56, 813-822.
- X. Yu, S. Zhang, C. Li, C. Zhu, Y. Chen, P. Gao, L. Qi and X. Zhang, *Nanoscale*, 2016, 8, 10902-10907.
- 20. Y. Wang, L. Liu, X. Zhang, F. Yan, C. Zhu and Y. Chen, *J. Mater. Chem. A*, 2019, 7, 22412-22419.
- B. Liu, H. Li, B. Cao, J. Jiang, R. Gao and J. Zhang, *Adv. Funct. Mater.*, 2018, 28, 1801527.
- 22. Z. Pu, I. S. Amiinu, C. Zhang, M. Wang, Z. Kou and S. Mu, *Nanoscale*, 2017, **9**, 3555-3560.
- 23. L.-L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, J.

Am. Chem. Soc., 2015, 137, 14023-14026.

- 24. Y. Liang, Q. Liu, A. M. Asiri, X. Sun and Y. Luo, ACS Catal., 2014, 4, 4065-4069.
- 25. K. Li, J. Zhang, R. Wu, Y. Yu and B. Zhang, Adv. Sci., 2016, 3, 1500426.