COMMUNICATION

Electronic Supplementary Information

High-Efficiency Perovskite Nanocrystal Light-Emitting Diodes via Decorating NiO_x on Nanocrystals Surface

Weilin Zheng,[‡]^a Qun Wan,[‡]^a Qinggang Zhang,^a Mingming Liu,^a Congyang Zhang,^a Bo Wang,^a Long Kong,^a Liang Li,^{*,a,}

a. School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.

b. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.

E-mail addresses: liangli117@sjtu.edu.cn

These authors contributed equally to this work.

Figure S1 HRTEM images of (a) CsPbBr₃-DDAB and (b) CsPbBr₃-DDAB-Ni NCs.

Pe-QDs		Interplanar	Interplanar
		spacing (110)	spacing (001)
CsPbBr ₃ -DDAB	Inside	3.94 Å	5.87 Å
	Surface	3.92 Å	5.85 Å
CsPbBr ₃ -DDAB-Ni	Inside	3.92 Å	5.89 Å
	Surface	4.16 Å	5.91 Å

Table S1 Interplanar spacing of CsPbBr₃-DDAB and CsPbBr3-DDAB-Ni NCs

Figure S2 PL (absorbance is 0.5 at 450 nm) and UV-vis absorption spectra of CsPbBr₃, CsPbBr₃-DDAB, and CsPbBr₃-DDAB-Ni NCs.

Figure S3 Time-resolved PL decays and the fitted curves for the CsPbBr₃, CsPbBr₃-DDAB, and CsPbBr₃-DDAB-Ni NCs solutions detected with excitation of 450 nm.

Figure S4 TEM images of (a) CsPbBr₃, (b) CsPbBr₃-DDAB, and (c) CsPbBr₃-DDAB-Ni NCs

Figure S5 XRD patterns of CsPbBr₃, CsPbBr₃-DDAB, and CsPbBr₃-DDAB-Ni NCs

Figure S6 Optical images of the CsPbBr₃-DDAB-Ni NCs under illumination with a 450 nm LED light (175 mW/cm^2).

Figure S7 PL spectra of the CsPbBr₃, CsPbBr₃-DDAB, and CsPbBr₃-DDAB-Ni NCs solution as a function of the illumination time with a 450 nm LED light(175 mW/cm^2).

Figure S8 2p XPS spectra of the CsPbBr₃-DDAB-Ni NCs (a) before and (b) after light irradiation for 30 hours; (c) Ni K-edge XANES spectra; and (d) Ni K-edge Fourier transformed EXAFS spectra in the R space.

Figure S9 Illustration of the schematic perovskite LED device structure

Table S2 Characteristics of LED devices. L (Luminance), EQE (external quantum efficiency), V_{on} (turn-on voltage), CE (current efficiency)

Pe-QDs	L _{max}	Peak EQE Turn-on Voltage		CE _{max}
	(cd m ⁻²)	(%)	(V) @ 1cd m ⁻²	(cd A ⁻¹)
CsPbBr ₃	451	0.5	5.6	0.9
CsPbBr ₃ -DDAB	416	3.2	4.2	6.1
CsPbBr ₃ -DDAB-Ni	553	6.5	3.0	12.6
CsPbBr ₃ -DDAB-Ni- Illumi	870	9.2	3.0	17.8

Journal Name

Figure S10 High-binding energy secondary-electron cutoff regions of Pe-NCs and VB-edge region of Pe-NCs.

Figure S11 UV-vis absorption spectra of CsPbBr $_3$, CsPbBr $_3$ -DDAB, CsPbBr $_3$ -DDAB-Ni, and CsPbBr $_3$ -DDAB-Ni-BPO films

Figure S12 Current density–voltage (J–V) characteristics of (a) electron-only and (b) hole-only Pe-LED devices with CsPbBr₃, CsPbBr₃-DDAB, CsPbBr₃-DDAB-Ni, and CsPbBr₃-DDAB-Ni-BPO films.

The mobility was measured by the space charge limited current (SCLC) method by a hole-only device with a structure of ITO/PEDOT: PSS/Poly-TPD/Perovskite NCs/MoO₃/Al or an electron-only device with a structure of ITO/ZnO/Perovskite NCs TPBi/LiF/Al and estimated through the Mott-Gurney equation¹.

Figure S13 (a) Current density and Luminance versus driving voltage characteristics; (b) EQE versus current density characteristics with inserted table showing characteristics of LED devices; (c) EQE values of LEDs fabricated with different batches of CsPbBr₃-DDAB-Ni-BPO NCs.

Figure S14 Lifetime measurements of the CsPbBr₃-based LED devices.

Composition	V_{ON}	EL	Max. Luminance	Peak	Max. CE	Publication
and types	(V)	(nm)	(Cd/m²)	EQE (%)	(Cd/A)	Date and Ref
CsPbBr ₃ NCs	4.2	516	946	0.12	0.43	2015 ²
CsPbBr ₃ NCs	3.5	516	1377	0.06	0.19	2016 ³
CsPbBr₃ NCs	3.0	515	330	3	≈9	2016 ⁴
CsPbBr ₃ NCs	3.4	512	15185	6.27	13.3	2016 ⁵
CsPbBr ₃ NCs	4.6	515	12090	1.19	3.11	2017 ⁶
CsPbBr ₃ NCs	2.9	518	3059	1.1	3.66	2017 ⁷
CsPbBr ₃ NCs	2.6	512	1660	8.73	_	2017 ⁸
CsPbBr ₃ NCs	2.4	518	4212	0.35	1.38	2017 ⁹
CsPbBr ₃ NCs	2.8	516	7085	6.5	18.13	2018 ¹⁰
CsPbBr₃ NCs	≈7	\approx 520	≈450	1.43	4.69	201811
CsPbBr₃ NCs	2.4	515	55800	11.6	45.5	201812
CsPbBr₃ NCs	2.7	508	pprox1000	8.08	_	201813
CsPbBr₃ NCs	≈3	512	18600	15.17	\approx 50	201814
CsPbBr ₃ NCs	2.4	518	76940	16.48	66.7	2018 ¹⁵
CsPbBr₃ NCs	2.6	517	2270	9.7	31.7	2019 ¹⁶
CsPbBr₃ NCs	≈3.5	520	≈ 500	8.2	25.7	201917
CsPbBr ₃ NCs	2.8	512	2114	16.8	32.4	This work

Table S3. Summary of the performance of LEDs based on CsPbBr₃ NCs

As we know, the morphologies of emitting layer for perovskite light-emitting diodes (PeLEDs) could be bulk form, thin films and nanocrystals (NCs). In this paper, we focused on studying the device performances of PeLEDs based on NCs. Here, we collected the date about the device performances of CsPbBr₃ NCs LEDs, which is shown in the Table S2. To our knowledge, the EQE of 16.8% in our work may be the highest value for the LEDs fabricated with CsPbBr₃ NCs. Additionally, the highest EQE of 21.3% has been achieved by using all-inorganic CsPbBr_{0.6}l_{2.4} NCs as emitters¹⁸, which is the record-holder for all-inorganic NCs fabricated in LEDs.

References

1. G. Li, J. Huang, H. Zhu, Y. Li, J.-X. Tang and Y. Jiang, Chem. Mater., 2018, 30, 6099-6107.

2. J. Song, J. Li, X. Li, L. Xu, Y. Dong and H. Zeng, Adv. Mater., 2015, 27, 7162-7167.

3. X. Zhang, H. Lin, H. Huang, C. Reckmeier, Y. Zhang, W. C. Choy and A. L. Rogach, *Nano Lett.*, 2016, **16**, 1415-1420.

4. J. Pan, L. N. Quan, Y. Zhao, W. Peng, B. Murali, S. P. Sarmah, M. Yuan, L. Sinatra, N. M. Alyami, J. Liu,

E. Yassitepe, Z. Yang, O. Voznyy, R. Comin, M. N. Hedhili, O. F. Mohammed, Z. H. Lu, D. H. Kim, E. H. Sargent and O. M. Bakr, *Adv. Mater.*, 2016, **28**, 8718-8725.

5. J. Li, L. Xu, T. Wang, J. Song, J. Chen, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han and H. Zeng, *Adv. Mater.*, 2017, **29**.

6. P. Liu, W. Chen, W. Wang, B. Xu, D. Wu, J. Hao, W. Cao, F. Fang, Y. Li, Y. Zeng, R. Pan, S. Chen, W. Cao,
X. W. Sun and K. Wang, *Chem. Mater.*, 2017, **29**, 5168-5173.

7. H. Wu, Y. Zhang, X. Zhang, M. Lu, C. Sun, T. Zhang and W. W. Yu, Adv. Opt. Mater., 2017, 5, 1700377.

8. T. Chiba, K. Hoshi, Y. J. Pu, Y. Takeda, Y. Hayashi, S. Ohisa, S. Kawata and J. Kido, ACS Appl. Mater. Interfaces, 2017, **9**, 18054-18060.

9. H. Wu, Y. Zhang, X. Zhang, M. Lu, C. Sun, X. Bai, T. Zhang, G. Sun and W. W. Yu, *Adv. Electron. Mater.,* 2018, **4**.

10. Y. Tan, Y. Zou, L. Wu, Q. Huang, D. Yang, M. Chen, M. Ban, C. Wu, T. Wu, S. Bai, T. Song, Q. Zhang and B. Sun, ACS Appl. Mater. Interfaces, 2018, **10**, 3784-3792.

11. B. Liu, L. Wang, H. Gu, H. Sun and H. V. Demir, Adv. Opt. Mater., 2018, 6.

12. J. Song, J. Li, L. Xu, J. Li, F. Zhang, B. Han, Q. Shan and H. Zeng, Adv. Mater., 2018, 30, e1800764.

13. K. Hoshi, T. Chiba, J. Sato, Y. Hayashi, Y. Takahashi, H. Ebe, S. Ohisa and J. Kido, *ACS Appl. Mater. Interfaces*, 2018, **10**, 24607-24612.

14. S. Yuan, Z. K. Wang, M. P. Zhuo, Q. S. Tian, Y. Jin and L. S. Liao, ACS Nano, 2018, 12, 9541-9548.

J. Song, T. Fang, J. Li, L. Xu, F. Zhang, B. Han, Q. Shan and H. Zeng, *Adv. Mater.*, 2018, **30**, e1805409.
 J. H. Park, A. Y. Lee, J. C. Yu, Y. S. Nam, Y. Choi, J. Park and M. H. Song, *ACS Appl. Mater. Interfaces*,

2019, **11**, 8428-8435.

17. D. Yang, P. Li, Y. Zou, M. Cao, H. Hu, Q. Zhong, J. Hu, B. Sun, S. Duhm, Y. Xu and Q. Zhang, *Chem. Mater.*, 2019, **31**, 1575-1583.

18. T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa and J. Kido, *Nat. Photonics*, 2018, **12**, 681-687.