Supporting information

Plasma-Assisted Nitrogen Doping in Ni-Co-P Hollow Nanocubes for Efficient Hydrogen Evolution Electrocatalysis

Qiaomei Luo^a, Yiwei Zhao^a, Yuyang Qi^a, Hongqiang Xin^a, Chen Wang^a, Guanjun Chen^a, Jun Sun^a, Mingxia Liu^b, Kewei Xu^b, and Fei Ma^a*

^a State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China

^b Shaanxi Key Laboratory of Surface Engineering and Remanufacturing, Xi'an University, Xi'an 710065, Shaanxi, China

*Correspondence should be addressed to:

Fei Ma

State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University,

Xi'an 710049, Shaanxi, China

Tel: 86-029-82668319

Fax: 86-029-82668319

E-mail: mafei@mail.xjtu.edu.cn (F. Ma);

Figure S1. (a) SEM image (b) EDS (c) TEM image (d) XRD pattern of Cu₂O.

Figure S2. SEM and TEM images of Ni-Co LDHs with different molar ratio of Ni:Co (a, b)1:1, (c, d) 1:3 and (e, f) 3:1.

Figure S3. EDS and mapping images of Ni-Co LDHs.

Figure S4. XRD patterns of Ni-Co LDHs and the corresponding Ni-Co-O HNCs.

Figure S5. TEM image and EDS elemental mapping of Ni-Co-P HNCs.

Figure S6. (a) SEM image and (b) EDS N-Ni-Co-P HNCs.

Figure S7. (a)TEM image and (b) coral-horned nanoparticle size statistics of N-Ni-Co-P HNCs.

Figure S8. EDX elemental mapping for (a) O, (b) C of N-Ni-Co-P HNCs, corresponding to Figure 3g in the text.

Figure S9. XPS spectrum of O 1s in N-Ni-Co-P HNCs.

Figure S10. (a) The LSV curves of catalysts with different Ni/Co ratios, (b) The calculated Tafel slopes of the catalysts.

Figure S11. (a) LSV curves and (b) Tafel plots of the as-obtained catalysts on GCE.

Figure S12. XPS spectra of (a) Co 2p, (b) Ni 2p, (c) P 2p and (d) N 1s of N-Ni-Co-P HNCs after the HER durability test.

Figure S13. (a) Optical photo showing three-electrode test system (graphite rod as the electrode counter), (b) Catalytic performance of N-Ni-Co-P HNCs using a graphitic rod or a Pt mesh as the counter electrode in 1.0 M KOH, respectively.

Figure S14. The electrochemical double-layer capacitance (\underline{C}_{dl}) measurements with different scanning rates of 10, 20, 50, 100 and 200 mV s⁻¹ for (a) bare NF, (b) Ni-Co LDH HNCs, (c) Ni-Co-P HNCs (d) N-Ni-Co-P HNCs, (e) Pt-C, (f) The Double-layer capacity currents vs. scan rates of the as-prepared samples.

Figure S15. Pore-size distribution of (a) N-Ni-Co-P HNCs, (b) Ni-Co-P HNCs.

Figure S16. HER polarization curves of N-Ni-Co-P HNCs and Ni-Co-P HNCs catalysts normalized by ECSA.

Figure S17. HER polarization curves of N-Ni-Co-P HNCs and Ni-Co-P HNCs catalysts normalized by \underline{S}_{BET} surface area.

Figure S18. The crystal models of (a) Co₂P, (b) Ni-Co-P and (c) N-Ni-Co-P.

Figure S19. The optimized structure of H^* on (111) facet of (a) N-Ni-Co-P and (b) Ni-

Co-P.

Figure S20. The calculated HER free-energy diagram (FED) on N-Ni-Co-P (001) and Ni-Co-P (001) surface.

The d band center (ε_d) in Figure 8b can be calculated from the following formula [1]:

$$\varepsilon_{d} = \frac{\int_{-\infty}^{\infty} x \rho(x) dx}{\int_{-\infty}^{\infty} \rho(x) dx}$$
(1)

in which x and $\underline{\rho}(x)$ represent the energy (eV) and d-pdos of Co in Figure 8b.

Catalyst	<u>µ</u> ₁₀ /mV	<u>µ</u> 50/mV	Electrolyte	Reference
N-Ni-Co-P HNCs	47.9	150.5	1M KOH	This work
Ni ₁₂ P ₅ /Ni ₃ (PO ₄) ₂ -HS	114		1M KOH	R2
C@Ni ₈ P ₃	110		1M KOH	R3
Ni-Co-P-NF	85		1M KOH	R4
NiCo-LDH/NF	162		1M KOH	R5
NiCoP/CC	62		1М КОН	R6
Ni-Co-P HNBs	107		1M KOH	R7
N-NiCoP/NCF	78		1M KOH	R8
Ni-NiCoP	90	168	1M KOH	R9
Porous Ni-NiCoP	61		1М КОН	R10
NiCoP-CoP/NF	73		1М КОН	R11
S:CoP@NF	109		1M KOH	R12
Ni _{1.8} Cu _{0.2} -P/NF	78		1M KOH	R13
CoP/NiCoP/NC	75		1M KOH	R14
Ni ₂ P/NiCoP@NCCs	116		1М КОН	R15
NiCoP-NWAs/NF	104		1М КОН	R16
Ni-Fe-P@C NRs	79		1M KOH	R17

Table S1. Comparison of HER activity of various TMPs based catalysts

Table S2. Cdl, ECSA, BET and SBET of N-Ni-Co-P HNCs and Ni-Co-P HNCs.

Catalyst	<u>C</u> _{dl} (mF cm ⁻²)	ECSA (cm ²)	BET(m ² g ⁻¹)	<u>SBET</u> (cm ²)
N-Ni-Co-P HNCs	8.52	42.60	20.87	41.74
Ni-Co-P HNCs	6.67	33.35	15.06	30.12

REFERENCES

- Y. Qi, L. Zhang, L. Sun, G. Chen, Q. Luo, H. Xin, J. Peng, Y. Li and F. Ma, Nanoscale, 2020, 12, 1985-1993.
- 2. J. Chang, Q. Lv, G. Li, J. Ge, C. Liu and W. Xing, *Applied Catalysis B:* Environmental, 2017, 204, 486-496.
- J. Yu, Q. Li, N. Chen, C. Y. Xu, L. Zhen, J. Wu and V. P. Dravid, ACS Appl Mater Interfaces, 2016, 8, 27850-27858.
- C. Yu, F. Xu, L. Luo, H. S. Abbo, S. J. J. Titinchi, P. K. Shen, P. Tsiakaras and S. Yin, *Electrochim. Acta*, 2019, **317**, 191-198.
- W. Liu, J. Bao, M. Guan, Y. Zhao, J. Lian, J. Qiu, L. Xu, Y. Huang, J. Qian and H. Li, *Dalton Trans*, 2017, 46, 8372-8376.
- C. Du, L. Yang, F. Yang, G. Cheng and W. Luo, *ACS Catalysis*, 2017, 7, 4131-4137.
- E. Hu, Y. Feng, J. Nai, D. Zhao, Y. Hu and X. W. Lou, *Energy & Environmental Science*, 2018, 11, 872-880.
- 8. R. Zhang, J. Huang, G. Chen, W. Chen, C. Song, C. Li and K. Ostrikov, *Applied*

Catalysis B: Environmental, 2019, 254, 414-423.

- 9. Y. Lin, Y. Pan, S. Liu, K. Sun, Y. Cheng, M. Liu, Z. Wang, X. Li and J. Zhang, *Applied Catalysis B: Environmental*, 2019, **259**, 118039-118046.
- Y. Ji, J. Xie, Y. Yang, X. Fu, R. Sun and C. Wong, *Chin. Chem. Lett.*, 2019, DOI: 10.1016/j.cclet.2019.06.021.
- H. Liu, X. Ma, H. Hu, Y. Pan, W. Zhao, J. Liu, X. Zhao, J. Wang, Z. Yang, Q.
 Zhao, H. Ning and M. Wu, ACS Appl Mater Interfaces, 2019, 11, 15528-15536.
- 12. M. A. R. Anjum, M. S. Okyay, M. Kim, M. H. Lee, N. Park and J. S. Lee, *Nano Energy*, 2018, **53**, 286-295.
- S. Chu, W. Chen, G. Chen, J. Huang, R. Zhang, C. Song, X. Wang, C. Li and K. Ostrikov, *Applied Catalysis B: Environmental*, 2019, 243, 537-545.
- R. Boppella, J. Tan, W. Yang and J. Moon, *Adv. Funct. Mater.*, 2018, 29, 1807976-1807984.
- 15. L. Han, T. Yu, W. Lei, W. Liu, K. Feng, Y. Ding, G. Jiang, P. Xu and Z. Chen, Journal of Materials Chemistry A, 2017, 5, 16568-16572.
- 16. J. Li, G. Wei, Y. Zhu, Y. Xi, X. Pan, Y. Ji, I. V. Zatovsky and W. Han, *Journal of Materials Chemistry A*, 2017, **5**, 14828-14837.
- S. H. Ahn and A. Manthiram, *Journal of Materials Chemistry A*, 2017, 5, 2496-2503.