Supporting Information

for

Localized surface plasma resonance enhanced visible-light-driven CO₂ photoreduction in Cu nanoparticles loaded ZnInS solid solutions

Hai–Bo Huang,^{ab} Kai Yu,^a Ning Zhang,^a Jian–Ying Xu,^a Xu–Teng Yu,^a Heng–Xin Liu,^a Hai–Lei Cao,^a Jian Lü*^{ab} and Rong Cao*^b

^aFujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, P.R. China; ^bState Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China; [§]University of Chinese Academy of Sciences, Beijing 100049, P.R. China.

*Corresponding authors. E-mail: jian_lu_fafu@163.com (J.L.); rcao@fjirsm.ac.cn (R.C.).

Number of pages: 8 Number of tables: 2 Number of figures: 5

Table Caption

Table S1. The products of photoreduction CO_2 and the Cu element content of the ZIS-Cu(x) samples.

Table S2. The activity of photoreduction CO2 over the ZIS-Cu2 and other samples in

 the reported literature.

Figure Caption

Fig. S1. XPS survey spectra of ZIS-Cu(x) samples.

Fig. S2. (a) SEM; (b) TEM and (c) HR–TEM images; and (d) element mapping of the ZIS sample.

Fig. S3. (a) UV–vis DRS of ZIS-Cu(x); and (b) K–M plots of ZIS; (c) room–temperature photoluminescence (PL) spectra of ZIS-Cu(x) samples; and (d) Mott–Schottky plots of ZIS.

Fig. S4. (a) Cycling runs for the photoreduction CO₂ reaction of ZIS-Cu2; (b) PXRD patterns of ZIS-Cu2 before and after cycling reactions; (c) EIS Nyquist plots of ZIS-Cu(x); and (d) absorption spectra of DPD/POD reagent of the ZIS-Cu2 after reaction. **Fig. S5.** High–resolution XPS spectra of (a) Zn 2p, (b) In 3d, (c) S 2p and (d) Cu 2p of ZIS-Cu2 before and after cycling reactions.

Table S1					
Photocatalysts	Cu contents (%)	CH_4 selectivity (%)			
ZIS	N.A.	2.77			
ZIS-Cu1	1.14	24.3			
ZIS-Cu2	1.26	71.1			
ZIS-Cu3	2.41	46.7			
ZIS-Cu5	2.85	58.3			
ZIS-Cu7	3.25	12.4			

Photocatalysts	Light source N	Iain Product	Selectivity(%) (μmol h ⁻¹ g ⁻¹)	Ref.
Cu/TiO ₂	solar simulator 150W	СО	N.A.	CO 25 CH ₄ 4.4	[7]
Cu/GO-1	300W halogen lamp	CH ₄	41.2	1.08	[11]
Cu/C ₃ N ₄ -6	350W(Xe)	СО	N.A.	49.43	[6]
g-C ₃ N ₄ -Pt	$\lambda = 254 \text{ nm}$ 8 W (Hg)	CH_4	37.5	0.24	[4]
Pt/g-C ₃ N ₄ /NaNbO ₃	$\lambda > 420$ nm 300W (Xe)	CH_4	N.A.	6.4	[5]
Pt-Cu ₂ O/TiO ₂	300 nm <λ< 400 nm 300W (Xe)	CH ₄	N.A.	CO 0.05 CH ₄ 1.42	[9]
Ag/TiO ₂	300W (Xe)	CH ₄	N.A.	1.40	[10]
Ag-TiO ₂	$\lambda \ge 420$ nm 300W (Xe)	CH ₄	N.A.	2.89	[8]
One-Unit-Cell ZnIn ₂ S ₄	AM1.5G 300W (Xe)	СО	N.A.	33.2	[12]
V _{Zn} -ZnIn ₂ S ₄	AM1.5G 300W (Xe)	СО	N.A.	276.7	[13]
ZnIn ₂ S ₄ /TiO ₂	AM1.5G 300W (Xe)	CH_4	N.A.	1.13	[14]
RGO-CdS	$\lambda \ge 420$ nm 300W (Xe)	CH ₄	N.A.	CH ₄ 2.51	[3]
CdS@CeO2	$\lambda \ge 420$ nm 300W (Xe)	CH ₃ OH	N.A.	CH ₄ 0.87 CH ₃ OH 137.5	[1]
CdS–WO ₃	$\lambda \ge 420$ nm 300W (Xe)	CH ₄	N.A.	CH ₄ 1.02	[2]
ZIS-Cu2	λ≥420nm 300W (Xe)	CH ₄	71.1	CH ₄ 13.0	This work

Table S2

Fig. S2

References

- [1] L. J. Liu, F. Gao, H. L. Zhao and Y. Li, *Appl. Catal. B–Environ.*, 2013, 134-135, 349–358.
- [2] I. Shown, H. C. Hsu, Y. C. Chang, C. H. Lin, P. K. Roy, A. Ganguly, C. H. Wang, J. K. Chang, C. I. Wu and L. C. Chen, *Nano Lett.*, 2014, 14, 6097–6103.
- [3] G. D. Shi, L. Yang, Z. W. Liu, X. Chen, J. Q. Zhou, Y. Yu, *Appl. Sur. Sci.*, 2018, 427, 1165–1173.
- [4] K. Koci, H. D. Van, M. Edelmannova, M. Reli and J. C. S. Wu, Appl. Surf. Sci., 2020, 503, 144426.
- [5] H. F. Shi, G. Q. Chen, C. L. Zhang and Z. G. Zou, ACS Catal., 2014, 4, 3637– 3643.
- [6] Z. Xiong, Z. Lei, C. C. Kuang, X. Chen, B. Gong, Y. C. Zhao, J. Y. Zhang, C. G. Zheng and J. C. S. Wu, *Appl. Catal. B–Environ.*, 2017, 202, 695–703.
- [7] B. C. Yu, Y. Zhou, P. Li, W. G. Tu, P. Li, L. Q. Tang, J. H. Ye and Z. G. Zou,

Nanoscale, 2016, 8, 11870–11874.

- [8] J. Q. Jiao, Y. C. Wei, Z. Zhao, W. J. Zhong, J. Liu, J. M. Li, A. J. Duan and G. Y. Jiang, *Catal. Today*, 2015, **258**, 319–326.
- [9] X. C. Jiao, Z. W. Chen, X. D. Li, Y. F. Sun, S. Gao, W. S. Yan, C. M. Wang, Q. Zhang, Y. Lin and Y. Luo, *J Am. Chem. Soc.*, 2017, 139, 7586–7594.
- [10] Y. Q. He, H. Rao, K. P. Song, J. X. Li, Y. Yu, Y. Lou, C. G. Li, Y. Han, Z. Shi and S. H. Feng, *Adv. Funct. Mater.*, 2019, 29, 1905153.
- [11] G. Yang, D. M. Chen, H. Ding, J. J. Feng, J. Z. Zhang, Y. F. Zhu, S. Hamid and D. W. Bahnemann, *Appl. Catal. B–Environ.*, 2017, 219, 611–618.
- [12] J. G. Yu, J. Jin, B. Cheng and M. Jaroniec, J. Mater. Chem. A, 2014, 2, 3407.
- [13] S. Ijaz, M. F. Ehsan, M. N. Ashiq, N. Karamat and T. He, *Appl. Surf. Sci.*, 2016, 390, 550–559.
- [14] J. Jin, J. G. Yu, D. P. Guo, C. Cui and W. Ho, Small, 2015, 11, 5262-5271