Supporting Information

Highly Interweaved HA-ss-nHAp/Collagen Hybrid Fibering Hydrogel Enhanced Osteoinductivity and Mineralization

Xing Li¹, Manyu Chen¹, Peilei Wang¹, Ya Yao¹, Xiaowen Han¹, Jie Liang¹², Qing Jiang¹, Yong Sun,¹* Yujiang Fan¹ and Xingdong Zhang¹

¹National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610064, P. R. China

²Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, China.

Corresponding Author

Yong Sun*

Biomaterials Building, Sichuan University, Chengdu 610064, China

Tel: +86-28-85417654 Fax: +86-28-85417654 e-mail: sunyong8702@scu.edu.cn

Primer	Sequence (5'-3')		
β-Actin-F	TGGCTCTAACAGTCCGCCTAG		
β-Actin-R	AGTGCGACGTGGACATCCG		
Runx2-F	TGGCGGGTAATGATGAAAAT		
Runx2-R	GAGGCGGTCAGAGAACAAA		
OCN-F	GACACCATGAGGACCCTCTC		
OCN-R	GCCTGGTAGTTGTTGTGAGC		
OPN-F	CGCCGTGATTTGCTTTTGTC		
OPN-R	GCATCCGGGTGTTTGTGGTA		

Table S1. Primers used to amplify mRNAs encoding rabbit β -Actin.

Sample	N(%)	Si(%)	C(%)	N/Ca
НАр	0	0	12.13±1.2	0
HAp-A alcohol solution	3.25 ± 0.3	3.80 ± 0.5	24.02 ± 1.3	0.23 ± 0.02
HAp-A anhydrous toluene	4.03 ± 0.4	4.87 ± 0.3	23.84 ± 1.0	0.26 ± 0.03
НАр-Т-А	4.35±0.2	16.42 ± 0.2	22.26±1.4	0.61 ± 0.01
HAp-NH ₂	4.69±0.1	12.61 ± 0.1	34.17±1.0	0.63 ± 0.01

Table S2. Atomic percentages of N, Si, C and N/Ca ratio observed from XPS survey scans

Sample	Weight retention (%)	Total grafting content (%)
НАр	93.09	0
HAp-A alcohol solution	91.91	1.18
HAp-A anhydrous toluene	91.60	1.49
НАр-Т-А	85.74	7.35
HAp-NH ₂	81.30	11.79

 Table S3. The results of surface grafting reaction.

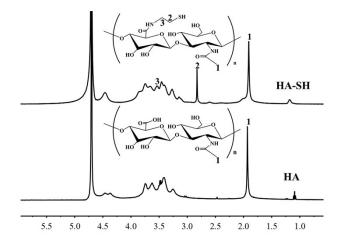
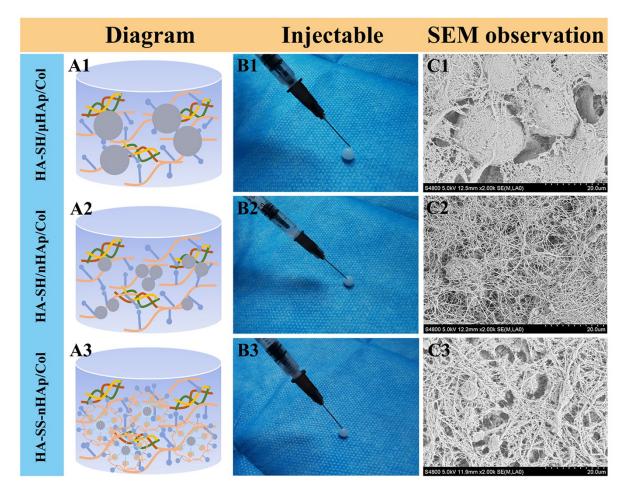



Figure S1. ¹H-NMR (D₂O) spectra of HA and HA-SH.

Figure S2. (A1-A3) The schematic diagram for inner structure of three hybrid hydrogels. (B1-B3) Injection images of hybrid hydrogels. (C1-C3) SEM images of three hybrid hydrogels.

The disintegration performance of hydrogels in type I collagenase was tested under following condition: The prepared disc-shaped hydrogels were freeze-dried and weighed (Wo). And then, they were immersed in deionized water containing 100 μ g/mL type I collagenase in a constant temperature shaker at 90 rpm at 37 °C. At a certain time interval, the hydrogels were taken out and washed in distilled water, freeze-dried and weighed again (Wr). Every sample was measured in three replicates. The disintegration performance of hydrogels was expressed as percentage of weight loss and was calculated as follows: Weight loss percentage = (Wo–Wr)/Wo × 100%.

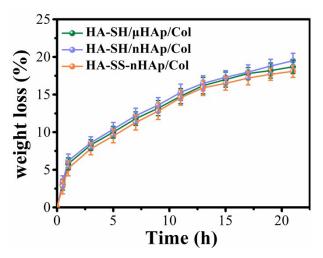


Figure S3. Disintegration behaviour for hybrid hydrogels in type I collagenase.

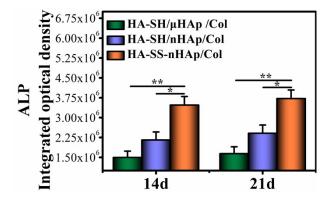


Figure S4. The semi-quantitative results for ALP staining. The data were presented as mean \pm standard deviations (SD) from 3 independent experiments (n= 3). *p < 0.05, **p < 0.01 and ***p < 0.001.