Supplementary Information

A DFT-NEGF study on the electronic and transport properties of 2D SbSiTe₃

Xuemin Hu^a, Hengze Qu^b, Lili Xu^b, Wenqiang Liu^b, Tingting Guo^b, Bo Cai^b, Xuechao Yu^b, Junwu Zhu^{*a}, Shengli Zhang^{*b}

^aKey Laboratory for Soft Chemistry and Functional Materials, Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China.
E-mail: <u>zhujw@njust.edu.cn</u>

^bMIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

E-mail: zhangslvip@njust.edu.cn

Туре	Lattice parameters (Å)	L (Å)	d ₀ (Å)
Bulk	a=b=7.147	3.953	3.161
Five-layer	a=b=7.141	3.956	3.168
Four-layer	a=b=7.139	3.958	3.169
Trilayer	a=b=7.138	3.959	3.175
Bilayer	a=b=7.133	3.963	3.175
Monolayer	a=b=7.127	3.973	/

Table S1. The optimized lattice parameters, layered thickness (L), and interlayer distance (d_0) for few-layer SbSiTe₃.

Туре	Binding Energy (eV/atom)
Bulk	4.210
Five-layer	4.191
Four-layer	4.186
Trilayer	4.178
Bilayer	4.162
Monolayer	4.118

Table S2. The binding energy of few-layer and bulk SbSiTe₃.

Table S3. The off-current (I_{off}) and the on-current (I_{on}) of 2D SbSiTe₃ MOSFET with the channel length is 10 nm and 5nm.

Туре	Channel length (nm)	V _{dd}	I _{off} (μΑ/μm)	I _{on} (μA/μm)
	10	0.72	0.1	210
		0.72	2×10 ⁻⁵	30

	5	0.64	0.1	51
	3	0.64	5×10 ⁻⁵	\
n-type				
	10	0.72	0.1	350
,	10	0.72	2×10 ⁻⁵	32
р-туре	-	0.64	0.1	223
	5	0.64	5×10 ⁻⁵	\

Fig. S1. The band structure of bulk SbSiTe₃ at HSE06 level.

Fig. S2. The band structure of bulk SbSiTe₃ at HSE06+soc level.

Fig. S3. The phonon spectrums of (a) monolayer, (b) bilayer and (c) bulk SbSiTe₃. (d) The total energy variation versus time at T = 300 K, and insert is the top and side views of a snapshot of monolayer SbSiTe₃ after 3 ps in the MD simulation.

Fig. S4. The band structures of (a) four-layer and (b) five-layer SbSiTe₃ at PBE level.

Fig. S5. The band structure of monolayer SbSiTe₃ at (a) PBE + soc, (b) HSE06 and (c) HSE + soc level.

Fig. S6. (a) The energy-strain relation and the energy shifts versus strain with respect to the vacuum energy of (b) CBM and (c) CBM for monolayer SbSiTe₃.