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S1. DDAP atomic charges: anisotropic permeation across N4O2 pores and charge value 

dependence on strain 

  
Figure S1. Analog of Fig. 2 in the main text, as obtained with DDAP charges (QO = -0.23, QN = -

0.48) (a) and relative changes in DDAP atomic charges (averaged throughout the corresponding 

set of atoms lining each pore) as functions of isotropic strain (b). In (a), the strain sensitivities are 

𝜇𝑋𝑋 = 19.14, 𝜇𝑌𝑌 = 31.74, and 𝜇𝑋𝑌 = 48.03 (𝜇𝑋𝑌 is obtained from exponential fitting to the data 

corresponding to ε ≤ 0.025). In (b), atomic charges tend to decrease (in absolute value) with 

increasing strain. 

 

S2. Analytical estimates of permeation anisotropy 

The level of anisotropy in ionic permeability gated by uniaxial strains can be roughly estimated 

analytically. In the simplest case of X and Y strain directions, consider the structure in Fig. 1. 

The free energy for a pore-trapped solvated ion interacting with the hydrated pore is 

approximated as [1]: 

𝑈 = 𝑈𝑖𝑜𝑛−𝑝𝑜𝑟𝑒 + 𝑈𝑖𝑜𝑛−𝑤𝑎𝑡𝑒𝑟,      (S1) 

where 𝑈𝑖𝑜𝑛−𝑝𝑜𝑟𝑒 ∝ ∑(
𝑄𝑖

𝑟0
− 2

𝑄𝑖/2

𝑟1
) is the sum of vacuum interactions with six edge dipoles 

(indexed by i) shown in Fig. 1. Here, each dipole consists of the negative atomic charge −𝑄𝑖 of 

the nitrogen or oxygen atom at the inner edge of the pore and a corresponding pair of carbons 

with charges 
+𝑄𝑖

2
 at the outer edge. The following estimate does not include anisotropy in the 

changes 𝑈𝑖𝑜𝑛−𝑤𝑎𝑡𝑒𝑟 between Y and X directions and is limited to estimating the 𝛿𝑈𝑖𝑜𝑛−𝑝𝑜𝑟𝑒
𝑌𝑌 −

𝛿𝑈𝑖𝑜𝑛−𝑝𝑜𝑟𝑒
𝑋𝑋  in the differential limit of pore geometry distortions, assuming that all atomic 

displacements due to strain correspond to bulk continuum values and ignoring the mechanical 

properties of the pore region. Also, only first-order electrostatic energy terms are included in the 

calculations. Just like in our MD simulations, we assume that the atomic charge values remain 



S3 

 

constant with respect to bond stretching considered here. Given these assumptions, the following 

is a simple exposition of the main source of anisotropy and not a quantitative estimate. 

For simplicity, absolute values of atomic charges are used below. 

 

Figure S2. A positively charged test ion in an N4O2 crown-like pore subject to uniaxial strain 

along X or Y direction. 

In general, for an arbitrary uniaxial strain direction, the change in 𝑈𝑖𝑜𝑛−𝑝𝑜𝑟𝑒 is effectively the 

corresponding sum of tensor elements describing the changes in 𝑟0 and 𝑟1 for all dipoles 

interacting with the test ion in Fig. S2.  With pore geometry in Fig. 1, each element can be 

estimated directly. For any membrane atom in the absence of strain interacting with the test ion 

at a distance 𝑟 with the corresponding radius-vector 𝒓 forming an angle 𝜑 with the X-direction, 

the radii perturbed by small uniaxial strains 𝜀𝑋𝑋 and 𝜀𝑌𝑌 are, respectively: 

𝑟𝑋𝑋 ≈ 𝑟(1 + 𝜀𝑋𝑋 𝑐𝑜𝑠2𝜑), 𝑟𝑌𝑌 ≈ 𝑟(1 + 𝜀𝑌𝑌 𝑠𝑖𝑛
2𝜑).   (S2) 

For uniaxial 𝜀𝑌𝑌, all inner edge N atoms are vertically displaced, along with the corresponding 

outer-edge carbons, above and below Y = 0. The two O atoms remain unperturbed, while the 

corresponding carbons are displaced. The resulting change in energy is  

𝛿𝑈𝑖𝑜𝑛−𝑝𝑜𝑟𝑒
𝑌𝑌 ∝

3𝑄𝑁

𝑟0
𝜀𝑌𝑌 −

39

14

𝑄𝑁

𝑟1
𝜀𝑌𝑌 −

3

14

𝑄𝑂

𝑟1
𝜀𝑌𝑌.    (S3) 

For uniaxial 𝜀𝑋𝑋, all inner and outer atoms are displaced horizontally to the left and right of X = 

0, so that: 

𝛿𝑈𝑖𝑜𝑛−𝑝𝑜𝑟𝑒
𝑋𝑋 ∝

𝑄𝑁

𝑟0
𝜀𝑋𝑋 −

17

14

𝑄𝑁

𝑟1
𝜀𝑋𝑋 +

2𝑄𝑂

𝑟0
𝜀𝑋𝑋 −

25

14

𝑄𝑂

𝑟1
𝜀𝑋𝑋.  (S4) 

As a sanity check, adding Eqs. (S3) and (S4), we obtain the correct energy change in response to 

biaxial strain. Assuming equal uniaxial strain magnitudes 𝜀𝑌𝑌 = 𝜀𝑋𝑋 = 𝜀, we obtain: 
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𝛿𝑈𝑖𝑜𝑛−𝑝𝑜𝑟𝑒
𝑌𝑌 − 𝛿𝑈𝑖𝑜𝑛−𝑝𝑜𝑟𝑒

𝑋𝑋 ∝
2(𝑄𝑁−𝑄𝑂)

𝑟0
𝜀 −

11

7

(𝑄𝑁−𝑄𝑂)

𝑟1
𝜀 =  

                                         = 2(𝑄𝑁 − 𝑄𝑂) (
1

𝑟0
−

1

𝑟1
) 𝜀 +

3

7

(𝑄𝑁−𝑄𝑂)

𝑟1
𝜀. (S5) 

Eq. (S5) without the rightmost term sets the following lower limit on the anisotropy in energy: 

𝛿𝑈𝑖𝑜𝑛−𝑝𝑜𝑟𝑒
𝑌𝑌 − 𝛿𝑈𝑖𝑜𝑛−𝑝𝑜𝑟𝑒

𝑋𝑋 ∝ 2(𝑄𝑁 − 𝑄𝑂) (
1

𝑟0
−

1

𝑟1
) 𝜀.  (S6) 

Note that the right side of Eq. (S6) is conveniently equal to 1/3 of the change in total energy of 

ion-pore interaction in a fully axisymmetric hexagonal pore lined with atoms carrying charge 

(𝑄𝑁 − 𝑄𝑂), subject to isotropic biaxial strain 𝜀. This finding enables a rough numerical estimate. 

To proceed from proportionality to functional dependence, we use the results in Ref. [1] to 

estimate the per-atom strain susceptibility 𝜇𝑎 ∝ (
1

𝑟0
−

1

𝑟1
). From Fig. 4a therein, 2% of isotropic 

strain applied to a fully symmetric hexagonal pore lined with six oxygen atoms (crown |𝑄𝑂| = 

0.4) results in ~6𝑘𝑏𝑇 = 15 kJ/mol change in the ion-pore electrostatic energy. Thus, per unit of 

strain, per unit of charge of the inner edge atom, the susceptibility is 𝜇𝑎 = 750. The ion-pore 

energy anisotropy is therefore at least 

𝛿𝑈𝑖𝑜𝑛−𝑝𝑜𝑟𝑒
𝑌𝑌 − 𝛿𝑈𝑖𝑜𝑛−𝑝𝑜𝑟𝑒

𝑋𝑋 =
𝜇𝑎𝑘𝑏𝑇

3
(𝑄𝑁 − 𝑄𝑂)𝜀.   (S7) 

Finally, we correct for the Poisson effect and introduce Poisson’s ratio υ = 0.19 [2], 

corresponding to bulk graphene with ripples significantly suppressed by water. The reader is 

encouraged to confirm that after simple manipulations Eq. (S7) becomes 

𝛿𝑈𝑖𝑜𝑛−𝑝𝑜𝑟𝑒
𝑌𝑌 − 𝛿𝑈𝑖𝑜𝑛−𝑝𝑜𝑟𝑒

𝑋𝑋 =
𝜇𝑎𝑘𝑏𝑇

3
(1 − υ)(𝑄𝑁 − 𝑄𝑂)𝜀.  (S7a) 

A comparison between MD-simulated data and Eq. (S7a) is shown in Fig. S3.  

 

Figure S3. Simulated (𝛿𝑈𝑖𝑜𝑛−𝑝𝑜𝑟𝑒
𝑌𝑌 − 𝛿𝑈𝑖𝑜𝑛−𝑝𝑜𝑟𝑒

𝑋𝑋 ) alongside the estimates by Eq. (S7a). The data 

is presented for CHELPG and DDAP atomic charge sets. 
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S3. Ion-water coordination 

The coordination numbers are calculated as follows: 𝑁𝑐 = 4𝜋 ∫ 𝑔(𝑟)𝑟2𝑑𝑟
𝑟1

0
, where 𝑟1 = 0.36 nm 

approximately corresponds to the first hydration shell. Here, 𝑔(𝑟) is the ion-water-oxygen radial 

distribution function (RDF). Shown in Fig. S4 are representative examples of MD-simulated 

RDF curves for a K+ ion in bulk water and the same ion trapped in the unstrained N4O2 pore, as 

well as this pore subject to 𝜀𝑌𝑌 = 𝜀𝑋𝑋= 0.04 in the presence of water. 

 

Figure S4. Examples of normalized ion-water-oxygen RDFs for K+ ions in bulk water and in 

strained and unstrained N4O2 pores (each RDF is calculated from 2500 timeframes in a 50-ns-

long simulation). As calculated, 𝑁𝑐,𝑏𝑢𝑙𝑘= 6.95. 

 

S4. Uniaxial strain applied along an arbitrary direction using a triclinic simulation cell 

Here, a uniaxial strain of magnitude 𝜀 is directed at an angle 𝜑 with the X-axis. In the following, 

we find the parameters that define the triclinic cell of the strained system and the transformed 

initial coordinates of the atoms in the triclinic system (see Fig. S5). The following should be 

applicable to any simulation cell setup for the Gromacs simulation package. 

 

Figure S5. Example unstrained and strained triclinic system. The dimensions are in angstroms. 
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Figure S6. Vector definitions; strain is applied along 𝒂𝟏. 

The strain tensor converted from the basis oriented along the direction of uniaxial strain to the 

original coordinate axes is: 

[
𝜀𝑋𝑋 𝜀𝑋𝑌

𝜀𝑋𝑌 𝜀𝑌𝑌
]
𝑂

= [
𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜑
−𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑

] [
𝜀 0
0 0

]
𝐴
[
𝑐𝑜𝑠𝜑 −𝑠𝑖𝑛𝜑
𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑

] = (S9) 

          = [
𝜀 𝑐𝑜𝑠2𝜑 𝜀 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑

𝜀 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 𝜀 𝑠𝑖𝑛2𝜑
].   (S10) 

The coordinate transformation is then: 

[
𝑥
𝑦] = [

𝜀 𝑐𝑜𝑠2𝜑 𝜀 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑

𝜀 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 𝜀 𝑠𝑖𝑛2𝜑
] [

𝑥0

𝑦0
] + [

𝑥0

𝑦0
].   (S11) 

Thus, the transformed unit vectors pointing along the triclinic cell edges can be found by setting 

(1, 0) and (0, 1) in Eq. (S11): 

𝑏1
⃗⃗  ⃗ =

1

𝛿𝑋
[
1 + 𝜀 𝑐𝑜𝑠2𝜑
𝜀 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑

],      (S12) 

𝑏2
⃗⃗⃗⃗ =

1

𝛿𝑌
[
𝜀 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑

1 + 𝜀 𝑠𝑖𝑛2𝜑
],      (S13) 

where  

𝛿𝑋 = √(1 + 𝜀 𝑐𝑜𝑠2𝜑)2 + 𝜀2𝑠𝑖𝑛2𝜑𝑐𝑜𝑠2𝜑,    (S14) 

𝛿𝑌 = √(1 + 𝜀 𝑠𝑖𝑛2𝜑)2 + 𝜀2𝑠𝑖𝑛2𝜑𝑐𝑜𝑠2𝜑.    (S15) 

For a simulation box of original in-plane dimensions 𝐿𝑋 and 𝐿𝑌, the new dimensions are 𝐿𝑋𝛿𝑋 

and 𝐿𝑌𝛿𝑌. The angle between unit vectors is 𝛼 = 𝑐𝑜𝑠−1(𝑏1
⃗⃗  ⃗ ∙ 𝑏2

⃗⃗⃗⃗ ). The transformed coordinates 

expressed in the triclinic system are 𝑥𝑡𝑟𝑖 = 𝛿𝑋𝑥 and 𝑦𝑡𝑟𝑖 = 𝛿𝑌𝑦, and the new position vectors are 

𝑟 = 𝑥𝑡𝑟𝑖𝑏1
⃗⃗  ⃗ + 𝑦𝑡𝑟𝑖𝑏2

⃗⃗⃗⃗  when expressed in the original coordinate system. 

 

S5. Directional response for diamond-shaped and triangular pores 

To better illustrate the symmetry observed in the response of permeability to uniaxial strains, an 

example of the full set of equivalent strain directions is shown in Fig. S7. In addition, we 

performed a directional strain sweep applied to nitrogen-terminated triangular pores in 

monolayer hexagonal boron nitride (hBN) [3, 4]. Note that all atomic charges were set to their 
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bulk values according to the recently reported parameterization [5] and thus the anisotropy here 

arises only from the pore geometry. The results are shown in Fig. S8; the observed anisotropy, 

although modest, exhibits symmetry similar to that observed for the diamond-shaped pores in 

MoS2.  

 

Figure S7. Diamond-shaped pore in MoS2 and a complete set of equivalent directions 

corresponding to the angular response shown in Fig. 5 of the main text. The green “flower” 

corresponds to the sinusoidal data fit in Fig. 5. Note that for clarity the ~7-degree tilt in the 

response observed in Fig. 5 is omitted here. Blue and red arrows correspond to uniaxial strain 

directions with the minimal and maximal ionic currents, respectively.  

 

Figure S8. Single-pore K+ currents across N-terminated triangular pores in monolayer hBN, as 

obtained from 0.5M aqueous KCl. Each permeation point was simulated for 400 ns. The 

directional strain sweeps were performed in the range 0° ≤ 𝜑 ≤ 90°, as described in the main 

text. The average data uncertainty is 2 pA. 

To demonstrate detection of parasitic pre-strain present in the membrane, we performed 

simulations similar to those presented in the main Fig. 5, except using a membrane, in which the 

pores are densely spaced and there is parasitic pre-strain (ε ≈ 0.01) along the X-direction. The 

results of the angular sweep in Fig. S9, aside from revealing larger ionic currents than those in 
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Fig. 5, contain a significant symmetry distortion in the Y-direction in the corresponding 

permeability response.  

 

Figure S9. Response of Na+ permeability to the angular sweep of uniaxial tensile strain (ε =

0.04), as applied to pre-strained pores. The angular range is 30° ≤ 𝜑 ≤ 150°, roughly 

corresponding to twice the response period of the pores in Fig. 5 and Fig. S7. Each permeation 

point was simulated for 400 ns. The average data uncertainty is 0.2 pA. 

 

S6. Temperature dependence of permeation anisotropy in N4O2 pores 

 

Figure S10. Single-pore K+ currents across N4O2 pores subject to uniaxial strains 𝜀𝑋𝑋 = 0.02 and 

𝜀𝑌𝑌 = 0.02 at various temperatures. The dash-dotted lines are quadratic fits to the ionic current 

data, used to obtain the trend in the resulting anisotropy ratio 𝜅𝑌𝑋 = 𝐼𝑌𝑌/𝐼𝑋𝑋 shown in the inset. 
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