SUPPORTING INFORMATION

Understanding of aging pattern in quantum dot light-emitting diodes by low-frequency noise

Kookjin Lee¹‡, Jinyoung Yun¹‡, Suhyeon Lee², Jae Ick Song¹, Yeonsu Kim¹, Jeonghun Kwak²* and Gyu-Tae Kim¹*

Figure S1. (a) Normalized current spectral density (S_I/I^2) of pristine QLED at 6 Hz, 10 Hz, 15 Hz, and 100 Hz. The variation in measured power spectral density (S_I) at various operating voltages over aging time with constant current source: (b) without aging, (c) 10 h, (d) 50 h, (e) 100 h, and (f) 200 h.

Figure S2. Power spectral density (S_I) of correlated noise model simulated by Python.

Figure S3. (a) Home-built low-frequency noise (LFN) measurement setup and mechanism. (b)

Aging measurement setup with constant current source.

Figure S4. Current density–voltage–luminance (J-V-L) characteristics of pristine QLED before and after exposure to the atmosphere for two weeks.

Figure S5. Current density–voltage (J-V) characteristics of QLED before and after 50 h current

stress.

Figure S6. Electroluminescence (EL) spectra of QLEDs over aging times.

Figure S7. (a) PL spectra and (b) the average peak value of PL intensity of the 5 devices with and without 50 h of current aging each.