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Experimental Section

Materials: All chemical reagents were used as received without further purification. 

Ethylenediamine (En, Ar, ≥99.0%), glycerol (Gl Ar, ≥99.0%), ethylene glycol (Eg, Ar, 99%), 

dimethyl formamide (Dmf, Ar, 99.0%), acetone (Ac, Ar, ≥99.5%), toluene (To, Ar, ≥99.5%), 

methanol (Me, Ar, ≥99.7%), ethanol (Et, Ar, ≥99.7% ) and carbon tetrachloride (Ct, Ar, 

99.5%) were purchased from Aladdin Chemical Co. Ltd. (Shanghai, China). The water used 

in all experiments was of Millipore Milli-Q grade.

Synthesis of Graphene Quantum Dots from Different Organic Solvents: Typically, 30 mL 

organic solvents (En, Gl, Eg, Dmf, Ac, To, Me, Et, and Ct) were transferred to a 

poly(tetrafluoroethylene) (Teflon)-lined autoclave (50 mL) and heated in oven (Shanghai Ke 

Heng Industrial Co., Ltd.) at 220 ºC. After 24 h, the autoclave was naturally cooled to room 

temperature. The names of resultant products were defined as GQDs-X, where X represents 

the abbreviation of different organic solvents. In addition, the decomposition of these organic 

solvents at different temperature (140, 160, 180, 200, and 240 oC) had been studied. 

To remove the unreacted organic solvents, the as-synthesized GQDs from different 

precursors were purified through different pots-treatment processes based on the otherness in 

physical and chemical properties of organic solvents. The unreacted En and Dmf in the 

resultant products were removed by vacuum distillation, and the GQDs-En and GQDs-Dmf 

solution was collected by rinsing the round bottom flask with deionized water. The unreacted 

Gl, To, and Eg in the resultant products were removed by vacuum column chromatography 

and the GQDs-Gl, GQDs-To, and GQDs-Eg solutions were collected by using deionized 

water as eluent. The unreacted Ac in the resultant products was dialyzed for 3 days using 

cellulose ester dialysis bag (molecular weight cutoff (MWCO) = 1000) at room temperature. 

The GQDs-Ac solution was collected and then concentrated to 10 ml through a heating 
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treatment. All GQDs solid could be obtained from the solution via freeze-drying. The aqueous 

dispersion and solid samples of the resultant GQDs were respectively collected for next use. 

Characterization: Atomic force microscopy (AFM) analyses were performed on a stand-alone 

AFM system (Model MFP-3D, Asylum Research, Santa Barbara, CA). High-resolution 

transmission electron microscopy (HRTEM) images were obtained using a JEOL JEM 2100 

system with an acceleration voltage of 200 kV. Raman scattering measurements were 

performed using a Horiba Jobin YvonT64000 Micro-Raman instrument with a torus 532 laser 

(λ = 532 nm) as an excitation source in backscattering geometry. A back-illuminated charge-

coupled device (CCD) cooled by liquid nitrogen was used to detect the scattered light. The 

Fourier transform infrared (FT-IR) spectrum was recorded with a Nicolet Instrument Co. iS10 

FT-IR spectrometer. The PL study was carried out on a Horiba Jobin Yvon Co. Fluorolog-3-

21 spectrofluorometer. The UV-vis spectrum was obtained on an ultraviolet-visible (UV-vis) 

spectrophotometer (UV 2550, Shimadzu Co., Japan). X-ray electron spectroscopy was 

performed on an ESCALAB 250 X-ray photoelectron spectrometer with Al Kα radiation. 

Vacancy structure were detected using the EPR technique (Bruker EMX plus 10/12, eruipped 

with Oxford ESR 910 Liquid Helium cryostat.).

In Vitro Cell Viability of GQDs-Eg, GQDs-Ac and GQDs-To: Both human cell lines 

including cervical cancer cells (Hela) and small cell lung cancer cells (NCI-H196) were 

seeded in a 96-well plate and incubated overnight in RPMI-1640 media supplemented with 

10% fetal bovine serum and 1% penicillin/streptomycin. On the following day, the medium 

was replaced with a medium containing GQDs-Eg, GQDs-Ac or GQDs-To, or with PBS 

(control), respectively. Each sample at different concentrations (25, 50, 100 and 200 µg mL–1) 

was run in sextuplicate. Cells were incubated with GQDs for 72 h. Cells in wells containing 

the medium without GQDs were used as the control. Cell viability was assessed by using a 

CellTiter-Glo Luminescent assay (Promega, Madison, WI, USA). Luminescence was 

measured in a multilabel plate reader (Envision PerkinElmer, USA). The fluorescence 
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intensity from GQDs-Eg, GQDs-Ac, or GQDs-To treated cells was compared to the intensity 

from PBS-treated control cells to determine percent viability.

In vitro Confocal Imaging: Hela cells were seeded onto glass coverslips in a 6-well plate. 

After overnight incubation, cells were incubated with GQDs-Eg, GQDs-Ac or GQDs-To (50 

μg/mL) for 4h, respectively. Cells were then washed with cold PBS three times and fixed with 

4% paraformaldehyde for 15 min at 37 oC. Cells were then mounted onto glass slides with 

ProLong® Gold Antifade Mountant (Life Technologies Inc., Gaithersburg, MD). The 

imaging of cells was acquired using an FV1200MPE laser scanning microscope (Olympus 

Corporation, Japan) at different excitation wavelengths, including 405, 488, and 546 nm. 

In Vitro Two-photon Fluorescent Imaging: Hela cells were seeded onto glass coverslips in a 

24-well plate. After 24 h, cells were incubated with GQDs-Eg, GQDs-Ac or GQDs-To (50 

μg/mL) for 4 h, respectively. Cells were then washed with PBS three times and fixed with 4% 

paraformaldehyde for 10 min. Nuclei were stained with 4′,6-diamidino-2-phenylindole 

(DAPI) before cells were mounted onto glass slides with ProLong® Gold Antifade Mountant 

(Life Technologies Inc., Gaithersburg, MD). Two-photon imaging was performed using a 

multiphoton microscope (Leica TCS SP8, Germany) with an excitation wavelength of 800 nm.

Histopathological Evaluation of organs from mice treated with GQDs-Eg, GQDs-Ac or 

GQDs-To: After being intravenously injected for five days using PBS injection (control) or 

GQDs-Eg, GQDs-Ac or GQDs-To (1 mg mL–1, dispersed in PBS), male ICR mice with six 

weeks old (Beijing Vital River Laboratory Animal Technology Co., Ltd, China) were 

euthanized and whole organs (heart, liver, spleen, lung, and kidney) were removed and 

preserved in 4% paraformaldehyde for 24 h. PBS-treated mice were used as control. Tissues 

were then embedded in paraffin, sliced into 5 µm sections, and stained with hematoxylin and 

eosin (H&E).

Hematology Assay: After being intravenously injected for 24 h using GQDs-Eg, GQDs-Ac or 

GQDs-To (1 mg mL–1, dispersed in PBS), 3mL of blood was drawn from mice (n  4) via the 
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cardiac puncture method after deep terminal anesthesia. PBS-treated mice (n  4) were used 

as control. Collected samples were sent to Nanjing Biomedical Research Institute of Nanjing 

University for analysis. 

Supplementary text

The relative PL QY of contrast agent is the usually the ratio of the emitted photons to the 

absorbed photons.[1] It can be led to

𝑄𝑌= 𝑄𝑌𝑟𝑒𝑓
𝜂2

𝜂 2
𝑟𝑒𝑓

𝐼
𝐼𝑟𝑒𝑓

𝐴𝑟𝑒𝑓
𝐴

where QYref is the QY of rhodamine B dissolved in ethanol as a reference, η is the refractive 

index of H2O = 1.3333 (ηref of ethanol = 1.361), I is the integrated PL intensity and A is the 

absorbance at the excitation wavelength. The absolute PL QY was measured and estimated.
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Supplementary figures 

Fig. S1. Optical photograph of organic solvents before (top) and after (down) being treated by 

a thermal process at 220 oC for 24 h. 

Fig. S2. Optical photograph of organic solvents before (top) and after (down) being treated by 

a thermal process at 140 oC for 24 h.

Fig. S3. Optical photograph of organic solvents before (top) and after (down) being treated by 

a thermal process at 240 oC for 24 h. 
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Fig. S4. Schematic illustration of grown mechanism of GQDs-En (a), GQDs-Gl (b) and 

GQDs-Dmf (c), respectively.

Fig. S5. (a-c) TEM and High-resolution TEM images (inset) of GQDs-En, GQDs-Gl, and 

GQDs-Dmf, respectively.
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Fig. S6. Size distributions of (a) GQDs-Eg, (b) GQDs-Ac (c) GQDs-To (d) GQDs-En, (e) 

GQDs-Gl or GQDs-Dmf obtained by measuring ~200 GQDs, respectively. 
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Fig. S7. Surface properties of GQDs-Eg. XPS high-resolution survey scan of C 1s (a) and O 

1s (b). The C 1s peaks at 284.8, 286.5 and 288.9 eV are assigned to the presence of graphitic 

carbon, C-O (epoxy/ether) and carbonyl.[2] The O 1s peaks at 531.7, 532.2 eV and 532.9 eV 

are associated with C=O, C-OH, and C-O-C, respectively.[3]  
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Fig. S8. Surface properties of GQDs-Ac. XPS high-resolution survey scan of C 1s (a) and O 

1s (b). The C 1s peaks at 284.9, 285.5, 286.4, and 288.9 eV are assigned to C−C (sp3)/C=C 

(sp2), C−OH (sp3), C-O (epoxy/ether, sp3) and O−C=O (sp2), respectively.[4] The O 1s peaks 

at 531.9, 532.5 and 533.0 eV are associated with C-O-C/C-OH, O-C-O and COOH, 

respectively.[3] 
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Fig. S9. Surface properties of GQDs-To. XPS high-resolution survey scan of C 1s (a) and O 

1s (b). The C 1s peaks at 283.9, 284.8 and 285.8 eV are assigned to C=C, C-C and C−O, 

respectively.[5] The O 1s peaks at 531.6, 532.6 and 533.1 eV are associated with C=O, C-OH 

and C-O-C.[6].



10

800 700 600 500 400 300 200

In
te

ns
ity

 / 
a.

u.

Binding Energy / eV

O 1s

N 1s

C 1sN:16.3%
O:13.9%
C: 69.8%

a

396 398 400 402 404

In
te

ns
ity

 / 
a.

u.

Binding Energy / eV

399.5
400.6

400.1

N 1sb

282 284 286 288 290 292

In
te

ns
ity

 / 
a.

u.

Binding Energy / eV

284.8

285.8

288.1

c C 1s

528 530 532 534 536

In
te

ns
ity

 / 
a.

u.

Binding Energy / eV

531.1
531.9

532.8

O 1sd

Fig. S10. Surface properties of GQDs-En. XPS scanning spectra (a) and XPS high-resolution 

survey scan of N 1s (b), C 1s (c) and O 1s (d). The N 1s spectra could be deconvoluted into 

three peaks assignable to pyridinic-N (399.5), graphitic N  (400.1 eV), and pyrrolic N (400.6 

eV).[7] The C 1s peaks at 284.8, 285.8 and 288.1 eV are assigned to C−C (sp3)/C=C (sp2), 

C−N (sp3), and O−C=O (sp2), respectively.[8] The O 1s peaks at 531.1, 531.9 and 532.8 eV are 

associated with C=O/O-H and C-O-C bonds.[9] 
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Fig. S11. Surface properties of GQDs-Dmf. XPS scanning spectra (a) and XPS high-

resolution survey scan of N 1s (b), C 1s (c) and O 1s (d). The N 1s spectra could be 

deconvoluted into three peaks assignable to pyridinic-N (398.9), graphitic N (400.1 eV), and -

NO2 (407.2 eV).[10] The C 1s peaks at 284.8, 285.4, and 288.3 eV are assigned to graphitic 

carbon, C-N bond and C=O carbonyl carbon bond.[8] The O 1s peaks at 531.6, 532.1 and 

532.7 eV are associated with C=O/O-H and C-O / C-NO2 bonds.[9]
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Fig. S12. Surface properties of GQDs-Gl. XPS scanning spectra (a) and XPS high-resolution 

survey scan of C 1s (b) and O 1s (c). The C 1s peaks at 284.8, 286.0, 287.3 and 289.6 eV are 

assigned to C=C/C-C, C-OH, C-O-C, and O-C=O.[11] The O 1s peaks at 531.5, 532.2 and 

532.9 eV are associated with C=O, O-H, C-O-C bonds.[9]
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Fig. S13. The stability of GQDs dispersed in (a) PBS and (b) PBS containing 10% fetal 

bovine serum (FBS) under different time points.
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Fig. S14. FT-IR spectra of the as-synthesized GQDs-En (a), GQDs-Gl (b) and GQDs-Dmf (c), 

respectively. 
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Fig. S15. UV-visible absorption spectra of GQDs-En synthesized at different temperature 

from 140 oC to 240 oC. The insets are optical pictures of GQDs-En synthesized at 220 oC 

under visible light (left) and UV light (right, 365 nm).
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Fig. S16. UV-visible absorption spectra of GQDs-Gl synthesized at different temperature 

from 140 oC to 240 oC. The insets are optical pictures of GQDs-Gl synthesized at 220 oC  

under visible light (left) and UV light (right, 365 nm).
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Fig. S17. UV-visible absorption spectra of GQDs-Dmf synthesized at different temperature 

from 220 oC to 240 oC. The insets are optical pictures of GQDs-Dmf synthesized at 220 oC 

under visible light (left) and UV light (right, 365 nm).
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Fig. S18. UV-visible absorption spectra of GQDs-Eg synthesized at different temperature 

from 140 oC to 240 oC.
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Fig. S19. UV-visible absorption spectra of GQDs-To synthesized at different temperature 

from 140 oC to 240 oC.

250 300 350 400 450 500 550 600

Ab
so

rb
an

ce
/ a

.u
.

Wavelength / nm

 220 ℃
 240 ℃

274 nm

240 nm

Fig. S20. UV-visible absorption spectra of GQDs-Ac synthesized at different temperature 

from 220 oC to 240 oC.
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Fig. S21. PL spectra of GQDs-En synthesized at a temperature of 220 oC under different 

excitation wavelengths.
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Fig. S22. PL spectra of GQDs-Gl synthesized at a temperature of 220 oC under different 

excitation wavelengths.
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Fig. S23. PL spectra of GQDs-Dmf synthesized at a temperature of 220 oC under different 

excitation wavelengths.
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solvents at 220 oC.
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Fig. S25. Relative PL intensity change of emission peak (565 nm) of GQDs-Eg synthesized at 

a temperature of 220 oC at a excitation wavelength of 440 nm with different irradiation time.

Fig. S26. Representative laser scanning confocal microscopy images of Hela cells treated 

with PBS for 4 h under different excitation wavelengths. (a) 405 nm; (b) 488 nm; (c) 546 nm.
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Fig. S27. Representative two-photon fluorescence cellular imaging. (a, d and g) DAPI nuclear 

stain, (b, e and h) two photon fluorescence, and (c, f and i) overlaid images of Hela cells 

incubated with GQDs-Eg, GQDs-Ac and GQDs-To. Excitation laser wavelength is 800 nm. 

The scale bar is 50 µm.
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Fig. S28. In vitro cytotoxicity in NCI-H196 cells treated with GQDs-Eg, GQDs-Ac, and 

GQDs-To for 72 h.
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