SUPPLEMENTARY INFORMATION

Amorphous iron oxide-selenite composite microspheres with yolk-shell structure as highly efficient anode material for lithium-ion batteries

Ju Hyeong Kim[‡], Gi Dae Park[‡], Yun Chan Kang^{*}

Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea.

* Corresponding author. *E-mail address: yckang@korea.ac.kr* (Yun Chan Kang)

[‡] The authors contributed equally to this work.

Experimetal Section

1. Materials characterization

The morphologies of the prepared microspheres were investigated using scanning electron microscopy (SEM, VEGA3) and transmission electron microscopy (TEM, JEM-2100F). The crystal structures and chemical properties of the prepared microspheres were analyzed using X-ray diffraction spectroscopy (XRD, X'pert PRO with Cu K_□ radiation, □□□ 1.5418 Å) at the Korea Basic Science Institute, Daegu, and X-ray photoelectron spectroscopy (XPS, Thermo ScientificTM, K-AlphaTM). Ex-situ XPS analyses at the first fully discharged and charged states after argon-ion gun etching were also performed with the above measuring equipment. The properties and the amount of pitch derived carbon was characterized via thermogravimetric analysis (TGA, Pyris 1 Thermogravimetric Analyzer, PerkinElmer) in the range of 25–700 °C at 10 °C min⁻¹ in an air-based atmosphere, respectively. The surface area and porosities of samples were analyzed using the Brunauer–Emmett–Teller (BET) method with high-purity N₂.

2. Electrochemical measurements

The electrochemical properties of the the prepared microspheres were analyzed using a 2032type coin cell. The anode was prepared by mixing the active material, carbon black, and sodium carboxymethyl cellulose in a weight ratio of 7:2:1. Lithium metal and microporous polypropylene films were used as counter electrode and separator, respectively. The electrolyte was 1.0 M LiPF₆ dissolved in a mixture of fluoroethylene carbonate–dimethyl carbonate (FEC/DMC; 1:1 v/v). The discharge and charge characteristics of the samples were investigated by cycling in the potential range of 0.001-3.0 V at various current densities. Cyclic voltammograms (CVs) were measured at a scan rate of 0.1 mV s⁻¹. Electrochemical impedance spectroscopy (EIS) was performed on the electrode over a frequency range of 0.01-100 kHz. In-situ EIS analysis was performed at preselected potentials during the discharge and charge processes at a current density of 0.1 A g⁻¹.

Fig. S1. Morphologies of yolk-shell structured c-Fe₂O₃ microspheres.

Fig. S2. XRD patterns of c-Fe₂O₃, FeSe₂-C, and a-Fe₂O₃-FeSeO_x microspheres.

Fig. S3. TGA curves of FeSe₂-C and a-Fe₂O₃-FeSeO_x microspheres.

Fig. S4. EDX spectrum of a-Fe₂O₃-FeSeO_x microspheres.

Fig. S5. XPS survey scans of FeSe₂-C and a-Fe₂O₃-FeSeO_x microspheres.

Fig. S6. (a) N_2 gas adsorption-desorption isotherm curves and (b) BJH pore size distributions of c-Fe₂O₃ and a-Fe₂O₃-FeSeO_x microspheres.

- R_{e} : the electrolyte resistance, corresponding to the intercept of high frequency semicircle at $Z_{re} \mbox{ axis}$
- R_f : the SEI layer resistance corresponding to the high-frequency semicircle
- Q1: the dielectric relaxation capacitance corresponding to the high-frequency semicircle
- R_{ct} : the denote the charger transfer resistance related to the middle-frequency semicircle
- Q₂ : the associated double-layer capacitance related to the middle-frequency semicircle
- Z_w : the Li-ion diffusion resistance
- Fig. S7. Equivalent circuit model used for AC impedance fitting.

Fig. S8. Electrochemical properties of $FeSe_2$ -C electrodes: (a) first galvanostatic dischargecharge profile, (b) rate performance, (c) cycling performance at a current density of 10 A g⁻¹.

Fig. S9. SEM images of a-Fe₂O₃-FeSeO_x microspheres obtained after 100 cycles.

Materials	Fe [wt%]	O [wt%]	Se [wt%]
a-Fe2O3-FeSeOx	65.40	29.12	5.48

Table S1. Compositions of the a-Fe₂O₃-FeSeO_x microspheres determined from ICP-OES analysis.