SUPPLEMENTARY INFORMATION

Amorphous iron oxide-selenite composite microspheres
with yolk-shell structure as highly efficient anode material
for lithium-ion batteries

Ju Hyeong Kim‡, Gi Dae Park‡, Yun Chan Kang*

Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea.

* Corresponding author. E-mail address: yckang@korea.ac.kr (Yun Chan Kang)
‡ The authors contributed equally to this work.
Experimental Section

1. Materials characterization

The morphologies of the prepared microspheres were investigated using scanning electron microscopy (SEM, VEGA3) and transmission electron microscopy (TEM, JEM-2100F). The crystal structures and chemical properties of the prepared microspheres were analyzed using X-ray diffraction spectroscopy (XRD, X'pert PRO with Cu Kα radiation, λ = 1.5418 Å) at the Korea Basic Science Institute, Daegu, and X-ray photoelectron spectroscopy (XPS, Thermo Scientific™, K-Alpha™). Ex-situ XPS analyses at the first fully discharged and charged states after argon-ion gun etching were also performed with the above measuring equipment. The properties and the amount of pitch derived carbon was characterized via thermogravimetric analysis (TGA, Pyris 1 Thermogravimetric Analyzer, PerkinElmer) in the range of 25–700 ºC at 10 ºC min⁻¹ in an air-based atmosphere, respectively. The surface area and porosities of samples were analyzed using the Brunauer–Emmett–Teller (BET) method with high-purity N₂.

2. Electrochemical measurements

The electrochemical properties of the prepared microspheres were analyzed using a 2032-type coin cell. The anode was prepared by mixing the active material, carbon black, and sodium carboxymethyl cellulose in a weight ratio of 7:2:1. Lithium metal and microporous polypropylene films were used as counter electrode and separator, respectively. The electrolyte was 1.0 M LiPF₆ dissolved in a mixture of fluoroethylene carbonate–dimethyl carbonate (FEC/DMC; 1:1 v/v). The discharge and charge characteristics of the samples were investigated by cycling in the potential range of 0.001–3.0 V at various current densities. Cyclic voltammograms (CVs) were measured at a scan rate of 0.1 mV s⁻¹. Electrochemical impedance spectroscopy (EIS) was performed on the electrode over a frequency range of 0.01–100 kHz. In-situ EIS analysis was performed at preselected potentials during the discharge and charge processes at a current density of 0.1 A g⁻¹.
Fig. S1. Morphologies of yolk-shell structured c-Fe$_2$O$_3$ microspheres.
Fig. S2. XRD patterns of c-Fe$_2$O$_3$, FeSe$_2$-C, and a-Fe$_2$O$_3$-FeSe$_{Ox}$ microspheres.
Fig. S3. TGA curves of FeSe$_2$-C and a-Fe$_2$O$_3$-FeSeO$_x$ microspheres.
Fig. S4. EDX spectrum of α-Fe₂O₃-FeSeOₓ microspheres.
Fig. S5. XPS survey scans of FeSe$_2$-C and a-Fe$_2$O$_3$-FeSeO$_x$ microspheres.
Fig. S6. (a) N$_2$ gas adsorption-desorption isotherm curves and (b) BJH pore size distributions of c-Fe$_2$O$_3$ and a-Fe$_2$O$_3$-FeSeO$_x$ microspheres.
\(R_e \): the electrolyte resistance, corresponding to the intercept of high frequency semicircle at \(Z_{re} \) axis

\(R_f \): the SEI layer resistance corresponding to the high-frequency semicircle

\(Q_1 \): the dielectric relaxation capacitance corresponding to the high-frequency semicircle

\(R_{ct} \): the denote the charger transfer resistance related to the middle-frequency semicircle

\(Q_2 \): the associated double-layer capacitance related to the middle-frequency semicircle

\(Z_w \): the Li-ion diffusion resistance

Fig. S7. Equivalent circuit model used for AC impedance fitting.
Fig. S8. Electrochemical properties of FeSe$_2$-C electrodes: (a) first galvanostatic discharge-charge profile, (b) rate performance, (c) cycling performance at a current density of 10 A g$^{-1}$.
Fig. S9. SEM images of a-Fe$_2$O$_3$-FeSeO$_x$ microspheres obtained after 100 cycles.
Table S1. Compositions of the a-Fe$_2$O$_3$-FeSeO$_x$ microspheres determined from ICP-OES analysis.

<table>
<thead>
<tr>
<th>Materials</th>
<th>Fe [wt%]</th>
<th>O [wt%]</th>
<th>Se [wt%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-Fe$_2$O$_3$-FeSeO$_x$</td>
<td>65.40</td>
<td>29.12</td>
<td>5.48</td>
</tr>
</tbody>
</table>