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S1  The Conductive Thermal Conductivity 1 

S1.1 Conductive Thermal Conductivity of Cell Walls and Struts 2 

 The conductive thermal conductivities of cell walls 𝑘c,wall and struts 𝑘c,strut were determined by 3 

analyzing the thermal resistance circuit of heat conduction based on the parallel-series and series-parallel 4 

methods for cubic foams.S1 The parallel-series model regards the material as being made up of parallel 5 

columns or sheets of the different phases equivalent to parallel thermal resistance circuit whereas the 6 

series-parallel model consists of layers in series equivalent to series thermal resistance circuit. Existing 7 

mathematical expressions for these conductive thermal conductivities were presented in several 8 

conventions, including: (i) expressions in terms of the void fraction, the material’s intrinsic solid-to-gas 9 

thermal conductivity ratio;S2 (ii) expressions in terms of the void fraction, the thermal conductivity of 10 

gas, and the thermal conductivity of solid;S1 (iii) expressions in terms of the foam’s geometrical 11 

configuration (the cell size and cell wall thickness for closed-cell foams, and the cell size and strut 12 

thickness for open-cell foams), the thermal conductivity of gas, and the thermal conductivity of solid;S3,S4 13 

(iv) expressions in terms of the foam’s geometrical configuration and the gas-to-solid thermal 14 

conductivity ratio.S3 Amongst the material’s intrinsic parameters, the gas-to-solid thermal conductivity 15 

ratio is suitable for the calculation of heat conduction solely through the solid phase, i.e., taking the ratio 16 

to 0 to represent the foam under the vacuum condition at a given void fraction. A new set of expressions 17 

for the conductive thermal conductivity in terms of the void fraction and the gas-to-solid thermal 18 

conductivity ratio are introduced in Table 1. 19 

 20 

S1.2 Thermal Conductivity of Gas: The Knudsen Effect 21 

 The thermal conductivity of gas inside a cell was determined by taking the Knudsen effectS5 into 22 

account, which causes the thermal conductivity of the gas to significantly decrease. In a confined space, 23 
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translation of gas molecules is governed by the Knudsen regime, in which the influence of cell size and 1 

mean free path on the efficiency of energy transfer is considered.S3,S6–S8 2 

 𝑘g =
𝑘g,bulk

1+2𝛽𝐾𝑛
 (S1) 3 

where 𝐾𝑛 = ℓmean/𝑑  is the Knudsen number, which refers to the ratio of the mean free path ℓmean of 4 

the gas (68 nm for air at 300 K and 1 bar)S7 to the cell size 𝑑. 𝛽 indicates the energy interaction between 5 

gaseous molecules and the solid surface (1.94 for air at 300 K and 1 bar).S6,S7 6 

 7 

S2.  Fundamentals of Mie Theory and Radiative Energy Attenuation 8 

S2.1  Lorenz-Mie-Debye Theory 9 

 In thermal insulation foam, radiation in the form of electromagnetic waves propagates through 10 

space and interacts with molecules of gas and polymer. Each photon carries a single discrete quantum 11 

of thermal radiation and influences electrons in the matter’s molecules to increase their energy levels, 12 

before some of those exciting electrons release their excess energy and emit photons in a spectrum of 13 

wavelengths based on Planck’s law of blackbody emission.S9–S11 Electromagnetic wave phenomena 14 

occur when the ray of photons interact with the matter. Some of the radiative energy may be reflected 15 

by the surface while the remainder penetrates the medium, where the radiative energy can be partially 16 

or completely absorbed. Multiple internal reflection, diffraction, scattering, absorption and re-emission 17 

occur in the foam structure of thermal insulation, leading to a tortious transport path of radiative energy 18 

transfer.S11,S12 In such complicated energy-matter interaction in foam, scattering and absorption makes a 19 

substantial contribution to attenuation of the radiative energy. 20 

 Scattering can be explained by the well-established Lorenz-Mie-Debye theory, also called Mie 21 

theory or Lorenz-Mie theory.S11,S13–S16 It is an analysical solution of Maxwell’s electromagnetic 22 

equations, which encompass the major laws of electricity and magnetism, for the scattering of a plane 23 

wave of electromagnetic radiation by a homogeneous dielectric spherical particle. It is worth noting that 24 
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Mie scattering is theoretical rather than a physical phenomenon. Mie scattering theory assumes that the 1 

oscillating electric field of the incident photon acts on the charges (i.e., electrons) within the particles, 2 

causing the charges to move at the same frequency and, therefore, to become small radiating dipoles, 3 

which radiate in various directions as scattered waves. This radiation is an integral part of the incident 4 

energy, and no frequency change occurs due to excitation or deexcitation. It is considered an elastic 5 

scattering process, in which the frequency (and thereby the wavelength) of the electromagnetic waves is 6 

not substantially changed. As Figure S1a shows, the plot between the extinction efficiency, i.e., the ratio 7 

of the extinction cross-section to the geometric-cross-section, and the size parameter 𝑥 = 2𝜋𝑟scatter/𝜆, 8 

which depends on the scatterer’s radius 𝑟scatter and the wavelength 𝜆, can be considered in three regimes: 9 

(i) When the scatterer’s size is relatively small compared to a wavelength, i.e., 𝑥 < 0.1, (ii) relatively 10 

moderate, i.e., 0.1 < 𝑥 < 50, and (iii) relatively large, i.e., 𝑥 > 50.S17,S18  When the scatterer’s radius is 11 

relatively small compared to the wavelength (① in Figure S1a), the Mie scattering gives similar results 12 

to Rayleigh scattering theoryS19 (the dashed line in Figure S1a), which shows a symmetric scattering 13 

envelope in the forward and backward directions, as shown in Figure S1b. As one of the limiting cases 14 

of Mie scattering, Rayleigh scattering, sometimes referred to as a molecular or particle scattering, does 15 

not involve internal interference. When the scatterer’s radius is increased (② in Figure S1a), the 16 

combined interference effects from each scattering point inside the scatterer produces the Mie solution, 17 

which varies sinusoidally. There is a departure from symmetry, more scattered energy in the forward 18 

direction than in the opposite direction. When the scatterer’s radius is relatively large compared to the 19 

wavelength (③ in Figure S1a), the Mie scattering is similar to geometric optics,S20,S21 also known as 20 

ray optics,S22–S24 in which reflection and refraction can be analyzed by simple geometry, assuming that 21 

the incident beam propagates in straight-line paths without considering electromagnetic wave effects 22 

such as diffraction and interference, as shown in Figure S1c. Scattering by a cylinder,S19,S25–S28 23 
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spheroid,S28–S31 prismatic column,S32–S34 and plateletS35,S36 can be determined by an equivalent solution 1 

to the Mie scattering by a sphere. 2 

 3 

 4 

Figure S1. (a) The extinction efficiency for scattering of a plane wave of electromagnetic radiation 5 

through a homogeneous sphere in  Raleigh scattering,  transition and  geometric optics regimes; 6 

(b) Symmetric scattering envelope in Rayleigh scattering for relatively large wavelengths and 7 

asymmetric scattering envelope for relatively moderate wavelengths; and (c) Geometric optics for 8 

relatively small wavelengths. 9 

 10 

S2.2  Cross-sections 11 

 Attenuation of the radiative energy due to scattering can be quantified by scattering cross-section. 12 

Considering a parallel beam of electromagnetic waves with a flux density 𝐹in along the incident direction 13 

shining on a particle, as shown in Figure S2a, the scattered beam of waves is measured within a small 14 

cone of solid angle dΩ, along a direction which makes an angle θ with the incident beam. The angle θ is 15 

known as the “scattering angle”.S11,S15 The intensity of the scattered beam, which is the scattered energy 16 

flux per solid angle, along the direction (θ, φ) is: 𝐼𝜆
(sca)

= 𝑑Φ𝜆
(sca)

/𝑑Ω. Assume that the particle is a 17 

homogeneous sphere, to comform to Mie theory. To simplify the scattering geometry, the z-axis is 18 
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directed along the direction of the incident flux with the origin at the center of the particle. By azimuthal 1 

symmetry, the scattered intensity depends only on the scattering angle θ of the spherical coordinate 2 

system,S11 meaning that 𝐼𝜆
(sca)( , 𝜑)  = 𝐼𝜆,𝜃

(sca)( ). 3 

 4 

  5 

Figure S2. (a) Incident and scattered beams of radiation, (b) Geometrical and effective extinction cross-6 

sections, (c) Radiative energy attenuation due to absorption and scattering. 7 

 8 

 The ratio of the scattered flux intensity 𝐼𝜆,𝜃
(sca)

 to the incident energy flux 𝐹in is the angular 9 

scattering cross-section: 10 

 𝐶𝜆,𝜃
(sca)( ) =

𝐼𝜆,𝜃
(sca)

(𝜃)

𝐹in
=

𝑑Φ𝜆/𝑑Ω

𝐹in
 (S2) 11 

By integrating over all solid angles, the spectral scattering cross-section is obtained. 12 

 𝐶𝜆
(sca) = ∫𝐶𝜆,𝜃

(sca)
𝑑Ω = ∫ ∫ 𝐶𝜆,𝜃

(sca)𝜋

0

2𝜋

0
sin  𝑑  𝑑𝜑 = 2𝜋 ∫ 𝐶𝜆,𝜃

(sca)𝜋

0
sin  𝑑  (S3) 13 

It is worth noting that the total power removed from the monochromatic incident radiation due 14 

exclusively to scattering can be obtained by the product of the scattering cross-section 𝐶𝜆
(sca)

 and the 15 

incident energy flux 𝐹in.S37 16 
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 For an absorbing material, which has a non-zero imaginary part of the spectral refractive index 1 

𝜅𝜆, the total power absorbed per unit incident energy flux is defined as the spectral absorption cross-2 

section 𝐶𝜆
(abs)

. 3 

 Because attenuation of the incident beam of electromagnetic waves is due to scattering and 4 

absorption, as shown in Figure S2b, the first law of thermodynamics gives the total flux of energy 5 

attenuated.S11 6 

 𝑞𝜆
(ext)

= 𝑞𝜆
(sca)

+ 𝑞𝜆
(abs)

 (S4) 7 

Because the geometric cross-section is constant, the spectral extinction cross-section is the sum of the 8 

scattering and absorption cross-sections.S11 9 

 𝐶𝜆
(ext)

= 𝐶𝜆
(abs)

+ 𝐶𝜆
(sca)

 (S5) 10 

When multiplied by the energy flux of incident monochromatic, the spectral extinction cross-section 11 

𝐶𝜆
(ext)

 gives the total power removed from the incident radiation due to both scattering and absorption.S37 12 

 13 

S2.3  Efficiency Factors 14 

 The ratio of the spectral scattering cross-section 𝐶𝜆
(sca)

 to the geometric cross-section 𝐶(geo) of 15 

the particle defines the spectral scattering efficiency factor 𝑄𝜆
(sca)

.S38,S39 16 

 𝑄𝜆
(sca)

=
𝐶𝜆
(sca)

𝐶(geo) =
𝑃𝜆
(sca)

𝑃
in
(geo) (S6) 17 

This quantity indicates the energy power 𝑃𝜆
(sca)

= 𝐶𝜆
(sca)

𝐹in removed due to scattering from the power 18 

of the incident ray that projects onto the geometrical cross-section 𝑃in
(geo)

= 𝐶(geo)𝐹in. 19 

 Similarly, the spectral absorption efficiency coefficient for an absorbing material is:  20 

 𝑄𝜆
(abs)

=
𝐶𝜆
(abs)

𝐶scatter
(geo) =

𝑃𝜆
(abs)

𝑃
in
(geo) (S7) 21 
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This quantity indicates the energy power 𝑃𝜆
(sca)

= 𝐶𝜆
(abs)

𝐹in absorbed from the power of the incident ray 1 

that projects onto the geometrical cross-section. 2 

 Because the same 𝐴scatter is considered, the spectral extinction efficiency factor becomes: 3 

 𝑄𝜆
(ext)

= 𝑄𝜆
(abs)

+𝑄𝜆
(sca)

 (S8) 4 

Thus, the spectral extinction efficiency factor becomes: 5 

 𝑄𝜆
(ext)

=
𝐶𝜆
(ext)

𝐶scatter
(geo) =

𝑃𝜆
(ext)

𝑃
in
(geo) (S9) 6 

The extinction efficiency factor indicates the extincted power 𝑃𝜆
(ext)

 removed, due to both scattering and 7 

absorption, from the power of the incident beam 𝑃in
(geo)

. It is worth noting that the scattering, absorption 8 

and extinction cross-sections are dependent on the particle size. 9 

 10 

S2.4  Spectral Extinction Coefficient 11 

 Considering that an incident beam encounters randomly oriented scatterers at various oblique 12 

incident angles 𝜙, which is the angle between the incoming incident ray and the scatterer’s normal 13 

direction, the spectral extinction cross-section represents attenuation of the incident beam due to both 14 

absorption and scattering. The mathematical description of the apparent spectral scattering cross-section 15 

〈𝐶𝜆
(sca)〉 and the apparent spectral extinction cross-section 〈𝐶𝜆

(ext)〉 is applied, respectively, for the 16 

apparent scattered energy and total attenuated energy with respect to the incident direction:S40 17 

 〈𝐶𝜆
(sca)〉 = ∫ 𝐶𝜆

(sca)
cos𝜙 sin𝜙 𝑑𝜙

𝜋/2

0
 (S10) 18 

 〈𝐶𝜆
(ext)〉 = ∫ 𝐶𝜆

(ext)
cos𝜙 sin𝜙 𝑑𝜙

𝜋/2

0
 (S11) 19 

The spectral extinction and scattering coefficients of the scatterer are thus defined by: 20 

 𝛽𝜆 = 𝑁v,scatter〈𝐶𝜆
(ext)〉 (S12) 21 

 𝜎𝜆 = 𝑁v,scatter〈𝐶𝜆
(sca)〉 (S13) 22 
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where 𝑁v,scatter is the number density of scatterers. For normal incidence, 𝜙 = 0, the incoming incident 1 

beam is perpendicular to the surface of the scatterer, meaning that 〈𝐶𝜆
(sca)〉 = 𝐶𝜆

(sca)
 and 〈𝐶𝜆

(ext)〉 =2 

𝐶𝜆
(ext)

. 3 

 Attenuation or extinction is the gradual loss of the radiative energy through a medium due to 4 

interaction between the incident electromagnetic waves and the matter. Defined as attenuation of the 5 

incident energy due to absorption and scattering at a specific wavelength 𝜆, the spectral extinction 6 

coefficient 𝛽𝜆 can be considered as the sum of the absorption coefficient 𝜅𝜆 and the scattering coefficient 7 

𝜎𝜆. 8 

 𝛽𝜆 = 𝜅𝜆 + 𝜎𝜆 (S14) 9 

 10 

S2.5  Asymmetry Factor and Effective Spectral Extinction Coefficient 11 

 Due to the non-isotropic nature of scattering in foams, unlike absorption, scattering can be 12 

apportioned into directions. The fraction of the energy transmitted in the forward direction can be 13 

described by the asymmetry factor 𝑔𝜆. The effective spectral extinction coefficient 𝛽𝜆
(eff)

, including 14 

absorption and scattering in the backward direction (Figure S2b), can be determined: 15 

 𝛽𝜆
(eff)

= 𝜅𝜆 + 𝜎𝜆(1 − 𝑔𝜆) (S15) 16 

Inserting Equation (S14), this becomes:S41,S42 17 

 𝛽𝜆
(eff)

 = 𝛽𝜆 − 𝑔𝜆𝜎𝜆 (S16) 18 

where the term 𝑔𝜆𝜎𝜆 represents the scattered energy in the forward direction. Equation (S16) will be 19 

applied for the effective spectral extinction coefficients of struts and cell walls. 20 

 The asymmetry factor 𝑔𝜆 of the scatterer is can be obtained from:S43 21 

 𝑔𝜆 =
∫ 𝑃𝜆

(sca)
cos𝜃

𝜋
0

𝑑𝜃

∫ 𝑃
𝜆
(sca)𝜋

0 𝑑𝜃
 (S17) 22 
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where the scattering phase function 𝑃𝜆
(sca)

 for mono-dispersion particles, which describes the angle-1 

dependent scattering of the incident beam, is defined by: 2 

 𝑃𝜆
(sca) = 4𝜋

𝜎𝜆,𝜃

𝜎𝜆
 (S18) 3 

and the angular scattering coefficient of the scatterer 𝜎𝜆,𝜙 is the product of the number density 𝑁scatter 4 

and the angular scattering cross-section 𝐶𝜆,𝜃
(sca)

: 5 

 𝜎𝜆,𝜃 = 𝑁scatter𝐶𝜆,𝜃
(sca)

 (S19) 6 

 Thus, the asymmetry factor becomes:S40,S43 7 

 𝑔𝜆 =
∫ 𝐶𝜆,𝜃

(sca)
cos𝜃

𝜋
0 𝑑𝜃

∫ 𝐶
𝜆,𝜃
(sca)𝜋

0 𝑑𝜃
=

∫ 𝐼𝜆
(sca)

cos𝜃
𝜋
0 𝑑𝜃

∫ 𝐼
𝜆
(sca)𝜋

0 𝑑𝜃
 (S20) 8 

It is worth to not that and 𝑔𝜆 = 0 for symmetric scattering, and the asymmetry factor of a cylinder can 9 

reach negative values when it is predominant back scattering. 10 

 The asymmetry factor of struts  was calculated by using Equation (S20) and the intensity of the 11 

scattered wave includes the incident in TM and TE cases:S38,S44,S45  12 

 𝐼𝜆
(sca)( ) =

𝐼𝜆
(TM)

+𝐼𝜆
(TE)

2
 (S21) 13 

and each case includes the scattered energy in both cases I and II. These quantities can be obtained using 14 

the optical theorem: 15 

 𝐼𝜆
(TM)

=
2

𝜋𝑥
(|𝑏0

𝐼 + 2∑ 𝑏𝑛
𝐼 cos(𝑛 )∞

𝑛=1 |2 + |2∑ 𝑎𝑛
𝐼 sin(𝑛 )∞

𝑛=1 |2) (S22) 16 

 𝐼𝜆
(TE)

=
2

𝜋𝑥
(|𝑎0

𝐼𝐼 + 2∑ 𝑎𝑛
𝐼𝐼 cos(𝑛 )∞

𝑛=1 |2 + |2∑ 𝑏𝑛
𝐼𝐼 sin(𝑛 )∞

𝑛=1 |2) (S23) 17 

where the coefficients 𝑎n
H, 𝑎n

E, 𝑏n
H and 𝑏n

E depend on (i) the complex refractive index m=n+ik, (ii) size 18 

parameter 𝑥 = 𝜋𝑑s/𝜆, which is dependent on the strut diameter 𝑑s and wavelength 𝜆, and (iii) the 19 

incident angle. The expressions for these coefficiencs can be found in Ref. S27, which implements the 20 

ratio algorithm for the computation of cylindrical functions in Ref. S46. 21 

 22 
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S3  Calculation of the Effective Spectral Extinction Coefifcient of Cell Walls 1 

S3.1  Derivation of the newly developed model for 𝛽𝜆,wall
(eff)

 2 

 Considering attenuation of thermal radiation by randomly oriented cell walls in the foam, each 3 

cell wall is assumed as an isolated platelet that attenuates the incident beam independently from each 4 

other. From Equation (S12), the spectral extinction coefficient of cell wall can be determined in terms 5 

of the number density of cell walls and the extinction capability of each cell wall, as follows: 6 

 𝛽𝜆,wall = 𝑁v,wall〈𝐶𝜆,wall
(ext) 〉 (S24) 7 

where 𝑁v,wall  is the number of cell walls per unit volume of foam, and 〈𝐶𝜆,wall
(ext) 〉 is the apparent spectral 8 

extinction cross-section of cell wall obtained by averaging the spectral extinction cross-section of cell 9 

wall over incidence angles from 0 to π/2: 10 

 〈𝐶𝜆,wall
(ext) 〉 = ∫ 𝐶𝜆,wall

(ext)
cos𝜙1sin𝜙1𝑑𝜙1

𝜋/2

0
 (S25) 11 

where 𝐶𝜆,wall
(ext)

 is the spectral extinction cross-section of cell wall for the incident beam interacts with a 12 

wall tilted by the incidence angle 𝜙1 measured away from the surface’s normal (Figure 1b). Because 13 

the spectral extinction efficiency factor is defined as the ratio of the spectral extinction cross-section to 14 

the geometric cross-section of cell wall at normal incident, 𝑄𝜆
(ext)

= 𝐶𝜆,wall
(ext)

/𝐶wall
(geo)

, the spectral 15 

extinction coefficient of cell wall becomes: 16 

 𝛽𝜆,wall = 𝑁v,wall𝐶wall
(geo)

∫ 𝑄𝜆,wall
(ext)

cos𝜙1sin𝜙1𝑑𝜙1
𝜋/2

0
 (S26) 17 

where the geometric cross-section of cell wall is equal to the average surface area of cell wall. 18 

 When the incident beam projects on the surface of a cell wall, part of the incident energy may be 19 

reflected from the surface, absorbed by the polymer molecules and transmitted through the cell wall. 20 

Accordingly, the fraction of the radiative energy reflected, absorbed and transmitted at a wavelength λ 21 

in the radiation spectrum can be defined as the spectral reflectivity (𝐴𝜆), spectral absorptivity (𝑅𝜆) and 22 
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spectral transmissivity (𝑇𝜆) of cell wall, respectively. For monochromic radiation, the sum of these 1 

fractions must equal to unity.S6,S15 2 

 𝐴𝜆,wall + 𝑅𝜆,wall + 𝑇𝜆,wall = 1 (S27) 3 

 Assuming the energy absorbed by each cell wall is emitted in thermodynamic equilibrium, based 4 

on Kirchhoff's law of thermal radiation,S47–S49 the fraction of energy emitted from a cell wall is equal to 5 

the fraction of energy absorbed by the cell wall, i.e., the spectral emissivity of cell wall equals the spectral 6 

absorptivity of cell wall. Because of thin cell walls in microcellular and nanocellular foams, the 7 

temperature profile across the thickness of a cell wall can be assumed as uniform. At the same surface 8 

temperature, the absorbed energy is emitted equally from both sides of the cell wall. 9 

 The net fraction of energy sent backward, including the reflected energy and half of the absorbed 10 

energy emitted in the backward direction can be considered as attenuation of the incident beam. 11 

Correspondingly, the spectral extinction efficiency factor of cell wall (𝑄𝜆,wall
(ext)

), which indicates the 12 

fraction of energy attenuated, can be obtained by the sum of the spectral reflectivity and half of the 13 

spectral absorptivity of cell wall. 14 

 𝑄𝜆,wall
(ext)

= 𝑅𝜆,wall +
1

2
𝐴𝜆,wall (S28) 15 

Because 𝐴𝜆,wall = 1 − 𝑅𝜆,wall − 𝑇𝜆,wall, the effective spectral extinction coefficient of cell wall becomes: 16 

 𝛽𝜆,wall
(eff)

= 𝑁v,wall𝐶wall
(geo)

∫ (1 + 𝑅𝜆,wall − 𝑇𝜆,wall)
sin(2𝜙1)

4
𝑑𝜙1

𝜋/2

0
 (S29) 17 

 18 

S3.2  Calculation of the Spectral Reflectivity and Spectral Transmittivity of Cell Wall 19 

 For each mode of the incident wave in the transverse magnetic (TM) and transverse electric (TE) 20 

modes, the spectral reflectivity 𝑅𝜆,wall and spectral transmissivity 𝑇𝜆,wall of a polymer film were 21 

calculated based on Fresnel formulae for an absorbing film considering the interference effects.S3,S15 22 

 𝑅𝜆,wall =
𝜌𝜆,gs
2 +𝜌𝜆,sg

2 +2𝜌𝜆,gs𝜌𝜆,sg cos2�̃�𝜆

1+𝜌𝜆,gs
2 𝜌𝜆,sg

2 +2𝜌𝜆,gs𝜌𝜆,sg cos2�̃�𝜆
 (S30) 23 
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 𝑇𝜆,wall =
𝜏𝜆,gs
2 𝜏𝜆,sg

2

1+𝜌𝜆,gs
2 𝜌𝜆,sg

2 +2𝜌𝜆,gs𝜌𝜆,sg cos2�̃�𝜆
 (S31) 1 

 The spectral reflection and transmission coefficients at the gas-solid (𝜌𝜆,gs, 𝜏𝜆,gs) and solid-gas 2 

(𝜌𝜆,sg, 𝜏𝜆,sg) interfaces were defined as:S3,S15 3 

 𝜌𝜆,gs =
�̂�𝜆,g cos𝜙1−�̂�𝜆,s cos𝜙2

�̂�𝜆,g cos𝜙1+�̂�𝜆,s cos𝜙2
 (S32) 4 

 𝜌𝜆,sg = −𝜌𝜆,gs (S33) 5 

 𝜏𝜆,gs =
2�̂�𝜆,g cos𝜙1

�̂�𝜆,g cos𝜙1+�̂�𝜆,s cos𝜙2
 (S34) 6 

 𝜏𝜆,sg =
2�̂�𝜆,s cos𝜙2

�̂�𝜆,g cos𝜙1+�̂�𝜆,s cos𝜙2
 (S35) 7 

 The spectral complex refractive indices of polymer film and non-absorbing gas were defined as 8 

�̂�𝜆,s = 𝑛𝜆,s + 𝑖𝜅𝜆,s and �̂�𝜆,g = 𝑛𝜆,g. The spectral value of 𝛽𝜆 and the refractive angle 𝜙2 at the gas-9 

polymer interface were calculated based on Snell’s law:S3,S15  10 

 𝛽𝜆 =
2𝜋𝑑wall

𝜆
�̂�𝜆,𝑠 cos𝜙2 (S36) 11 

 𝜙2 = sin−1 (
𝑛𝜆,𝑔

𝑛𝜆,𝑠
sin𝜙1) (S37) 12 

 13 

S4  Calculation of the Scattering and Extinction Efficiency Factors of Struts 14 

 The extinction efficiency factor 𝑄𝜆,strut,O
(ext)

 and the scattering efficiency factor 𝑄𝜆,strut,O
(sca)

 for a 15 

cylindrical strut can be split into two incident cases: transverse electric (TE) and transverse magnetic 16 

(TM) modes. In the TE mode, the electric field is transverse to the plane of incident, which is the plane 17 

that contains the incident ray and the surface’s normal vector. In the TM mode, the magnetic field vector 18 

is transverse to the plane of incident, i.e. the electric field vector is parallel to the plane of incident. The 19 

solutions for the scattered wave are usually further decomposed into two scattered components: the 20 

scattered wave in the same mode and in the different mode as the incident wave. 21 



14 

 The extinction efficiency factor is obtained by the average of the extinction efficiency factors 1 

corresponding to the incident TM and TE modes: 2 

 𝑄𝜆,strut,O
(ext) =

𝑄ext
(TM)

+𝑄ext
(TE)

2
 (S38) 3 

where the extinction efficiency factors corresponding to the incident TM and TE modesS27,S38,S46 are 4 

obtained by using the optical theorem:S27,S38,S46 5 

 𝑄ext
(TM)

=
2

𝑥
𝑅𝑒{𝑎0

H + 2∑ 𝑎n
H∞

𝑛=1 } (S39) 6 

 𝑄ext
(TE)

=
2

𝑥
𝑅𝑒{𝑏0

E + 2∑ 𝑏n
E∞

𝑛=1 } (S40) 7 

 Similarly, the scattering efficiency factor is obtained by the average of the scattering efficiency 8 

factors corresponding to the incident TM and TE modes: 9 

 𝑄𝜆,strut,O
(sca) =

𝑄sca
(TM)

+𝑄sca
(TE)

2
 (S41) 10 

where 11 

 𝑄sca
(TM)

=
2

𝑥
(|𝑎0

H|
2
+ 2∑ (|𝑎n

H|2 + |𝑏n
H|2)∞

𝑛=1 ) (S42) 12 

 𝑄sca
(TE)

=
2

𝑥
(|𝑏0

E|
2
+ 2∑ (|𝑎n

E|2 + |𝑏n
E|2)∞

𝑛=1 ) (S43) 13 

 14 

S5  Calculation of the Radiative Heat Transfer Coefficient 15 

 Based on the fluctuation-dissipation theorem and fluctuational electrodynamics, the radiative 16 

heat transfer coefficient at a temperature T was calculated as the contributions of evanescent and 17 

propagating modes:S50–S52 18 

 ℎrad(𝑇, 𝑑) = ℎevan(𝑇, 𝑑) + ℎprop(𝑇, 𝑑) (S44) 19 

Consider the radiative energy exchange between two polymer layers. Incident photons of various angular 20 

frequencies ω=2π/λ, corresponding to wavelengths in Planck’s energy distribution, interact with the 21 

surfaces of struts and cell walls at incidence angles varying from 0 to π/2. To account for the fact that 22 
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the foam structure is homogenous, non-magnetic, optically thin and randomly oriented, the contributions 1 

from propagating and evanescent modes can be calculated as follows: 2 

 ℎprop =
1

4𝜋2 ∫ (
𝜕Θ(ω,T)

𝜕𝑇
∫ [𝑆prop

TM (𝜔, 𝑘∥) + 𝑆prop
TE (𝜔, 𝑘∥)]𝑑𝑘∥

𝑘0 

0
)

∞

0
𝑑𝜔 (S45) 3 

 ℎevan =
1

𝜋2 ∫ (
𝜕Θ(ω,T)

𝜕𝑇
∫ [𝑆evan

TM (𝜔, 𝑘∥) + 𝑆evan
TE (𝜔, 𝑘∥)]𝑑𝑘∥

∞

𝑘0
) 𝑑𝜔

∞

0
 (S46) 4 

where 𝑘∥ = 𝑝𝑘0 is the parallel wavevector component along the surface corresponding to various 5 

incidence angles, with 𝑘0 = ω/c being the magnitude of the wavevector in the separation gap and p 6 

being a dimensionless parameter ranged from 0 to infinity. 0 ≤ 𝑝 ≤ 1 corresponds to propagating waves, 7 

whereas 𝑝 > 1 corresponds to evanescent waves. The derivative of the Planck’s mean energy of a 8 

harmonic oscillator with respect to the temperature is given by:  9 

 
𝜕Θ(ω,T)

𝜕𝑇
=

ℏ2𝜔2𝑒(ℏ𝜔/𝑘𝐵𝑇)

𝑘𝐵𝑇2(𝑒(ℏ𝜔/𝑘𝐵𝑇)−1)
2 (S47) 10 

where ℏ = ℎ/2𝜋 is the reduced Planck constant.S53,S54 For each polarization mode (TM and TE), the 11 

exchange functions are used to describe the frequency-dependent correlations of radiative heat transfer 12 

for propagating and evanescent waves as follows: 13 

 𝑆prop(𝜔, 𝑘p) = (
1−|𝑅m|2−|𝑇m|2

1−|𝑅m|2𝑒
2𝑖𝑘⊥,g𝑑

)
2

 (S48) 14 

 𝑆evan(𝜔, 𝑘p) = 𝑘p (
Im(𝑅m)

1−|𝑅m|2𝑒
2𝑖𝑘⊥,g𝑑

)
2

𝑒2 𝑘⊥,g𝑑 (S49) 15 

where the reflection coefficient 𝑅m and transmission coefficient 𝑇m of the material are given as:  16 

 𝑅m =
𝑟gs+𝑟sg𝑒

2𝑖𝑘⊥,s𝑡𝑠

1+𝑟gs+𝑟sg𝑒
2𝑖𝑘⊥,s𝑡𝑠

 (S50) 17 

 𝑇m =
 gs sg𝑒

𝑖𝑘⊥,s𝑡𝑠

1+ gs sg𝑒
2𝑖𝑘⊥,s𝑡𝑠

 (S51) 18 

where 𝑘⊥,g = 𝑘0√ 1 − 𝑝2 and 𝑘⊥,s = 𝑘0√𝜀𝑠 − 𝑝2 are the component wavevectors perpendicular to the 19 

surface in the gap and polymer, respectively, with  𝜀𝑠 being the dielectric constant of the polymer. The 20 
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details of the calculation for the Fresnel reflection and transmission coefficients 𝑟gs, 𝑟sg, 𝑡gs, and 𝑡sg can 1 

be found in Ref. S52. 2 

 3 

S6  Dimension and Number Density of Struts and Cell Walls 4 

S6.1  Cell wall thickness 5 

 For a given cell size (d), void fraction (ε) and volume fraction of polymer located in struts (known 6 

as strut fraction (Fstrut)), the cell wall thickness (dw) can be estimated by using the following formula:S55–7 

S57  8 

 𝑑𝑤 =
(1−𝜀)(1−𝐹strut)

𝑐12
𝑑 (S52) 9 

where 𝑐12 = 3.46 is constant for regular dodecahedral foam. 10 

 11 

S6.2  Strut Diameter 12 

 The strut diameter (ds), which is the diameter of volume-equivalent cylindrical strut, can be 13 

obtained by solving the following equation:S42 14 

 
(1−𝑉𝐹)0.348−2.8(

𝑑𝑠
𝑑
)
2
+3.93(

𝑑𝑠
𝑑
)
3

1.3143−7.367(
𝑑𝑠
𝑑
)+10.323(

𝑑𝑠
𝑑
)
2 =

(1−𝜀)(1−𝐹strut)

𝑐12
  (S53) 15 

 16 

S6.3  Geometric Cross-section of Cell Walls and Struts 17 

 The strut length 𝑎𝑠 in the regular dodecahedral cell is calculated by the following 18 

correlation:S58,S59 19 

 𝑎𝑠 = 0.4490280𝑑 (S54) 20 

 The geometric cross-section of cell walls is obtained by the average surface area of cell walls, 21 

which can be calculated from the surface area of cell walls divided by 12 faces in a regular dodecahedral 22 

cell:S58,S59 23 
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 𝐶𝑤𝑎𝑙𝑙
(𝑔𝑒𝑜)

=
3√25+10√5𝑎𝑠

2

12
= 0.1156311𝑑2 (S55) 1 

 The geometric cross-section of struts is the area projected normally by incident beam. At the 2 

normal incident (ϕ1=0), the geometric cross-section can be obtained from the diameter (𝑑𝑠) and the edge 3 

length (a𝑠) of the strut.S27 4 

 𝐶strut
(geo)

= 𝑑𝑠𝑎𝑠 (S56) 5 

 6 

S6.4  Number Densities of Cell Walls and Struts 7 

 The number density of struts and cell walls can be obtained when the cell number density of the 8 

foam is determined. The cell number density can be calculated using the correlation of the unit cell’s 9 

volume corresponding to the critical bubble lattice method:S60 10 

 𝑁v,cell =
𝑁cell

𝑉foam
=

1

�̅�cell
=

𝜒

(𝑑+𝑑𝑤)3
 (S57) 11 

where 𝑁cell is the number of cells in the volume of foam 𝑉foam, and �̅�cell is the average cell volume of 12 

each cell, for which the diameter of the insphere 𝑑ins = 𝑑 + 𝑑w is dependent on the cell size (d) and cell 13 

wall thickness (dw). The factor 𝜒 = 1.4414 is constant for the average cell volume of regular 14 

dodecahedral foam, for which the average cell volume (�̅�cell) and the edge length (𝑎) are:S58,S59  15 

 V̅cell =
1

4
(15 + 7√5)𝑎3 (S58) 16 

 𝑎 =
1

√
5

2
+

11

10
√5

(𝑑ins) (S59) 17 

 In regular dodecahedral foam, each of 12 cell walls is shared by two cells and each of 30 edges 18 

is shared by three cells; number density of struts 𝑁v,strut and number density of cell walls 𝑁v,wall can be 19 

obtained from: 20 

 𝑁v,wall =
12

2
𝑁v,cell = 6𝑁v,cell (S60) 21 

 𝑁v,strut =
30

3
𝑁v,cell = 10𝑁v,cell (S61) 22 
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 1 

S7  Material Properties 2 

 To calculate the predicted thermal conductivity and the conductive and radiative contributions of 3 

PS and PMMA foams at 300 K and 1 bar, the physical properties of the polymer and air were used in 4 

the model. Thermal conductivity of air was taken as 0.026 W m-1 K-1, and gaseous refractive index ng as 5 

1.0, with the extinction coefficient κg of 0.S3,S6 The thermal conductivity of polymer ks was taken as 6 

0.186 W m-1 K-1 for PSS3,S7 and 0.2098 W m-1 K-1 for PMMAS61. The spectral refractive indices 𝑛𝜆,s the 7 

spectral extinction coefficients 𝜅𝜆,s, and the spectral dielectric permittivities 𝜀𝜆,s were adopted from 8 

published data measured by FTIR for PSS62 and PMMAS63 films.  9 

 10 

S8  The Thermal Conductivity of PS and PMMA Foams 11 

 The conductive and radiative thermal conductivities of PS and PMMA foams as a function of 12 

various cell sizes and void fractions at 300 K are shown in Figure S3. Their contributions to the total 13 

thermal conductivity are shown in Figure S4.  14 

The theoretically predicted values and the measured experimental data for the total thermal 15 

conductivity of PS foamsS7,S12,S64–S70 and PMMA foams,S61,S71–S73 are compared in Figure S5 and Figure 16 

S6, respectively. 17 

 18 
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 1 

Figure S3. The conductive and radiative thermal conductivities of (a-b) PS and (c-d) PMMA foams as 2 

a function of the cell size at various volume expansion ratios. 3 
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 1 

Figure S4. Contributions of radiative heat transfer to the effective thermal conductivity of (a-b) PS and 2 

(c-d) PMMA foams at various volume expansion ratios and cell sizes. 3 

  4 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35 40

k
ra

d
/k

to
ta

l

Volume expansion ratio

1 mm
100 µm
10 µm
1 µm
100 nm
10 nm

PS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30 35 40

k
ra

d
/k

to
ta

l

Volume expansion ratio

1 mm
100 µm
10 µm
1 µm
100 nm
10 nm

PMMA

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.001 0.01 0.1 1 10 100 1000

k
ra

d
/k

to
ta

l

Cell size (µm)

2x

5x

10x

20x

40x

PMMA

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.001 0.01 0.1 1 10 100 1000

k
ra

d
/k

to
ta

l

Cell size (µm)

2x

5x

10x

20x

40x

PS
(a) (b)

(c) (d)



21 

 1 

 2 

Figure S5. Comparison of the modeling predictions and the experimental data for the total thermal 3 

conductivity of PS foams at various expansion ratios and cell sizes. 4 

  5 
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 1 

Figure S6. Comparison of the modeling predictions and the experimental data for the total thermal 2 

conductivity of PMMA foams at various expansion ratios and cell sizes. 3 

  4 
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