New theoretical insight into high coordination number complexes in actinides-centered borane

Shu-Xian Hu,*1,2.3 Peng Zhang,2 Wenli Zou,3 Ping Zhang4

¹ School of mathematics and physics, University of Science and Technology Beijing, Beijing 100083.

² Beijing Computational Science Research Center, Beijing 100193, China

³ Institute of Modern Physics, Northwest University, and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an, 710127, China.

⁴ Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, China.

Corresponding author, E-mail: hushuxian@csrc.ac.cn

Table S1. The multiplicities, the relative energies (ΔE , kcal/mol) compared with the most stable multiplicity isomer and the reaction energies (RE, kcal/mol) of An + B₂₄ \rightarrow AnB₂₄ for AnB₂₄

structure	State	RE	ΔE_{pbe}	ΔE_{b3lyp}
	¹ A	-157.08	0.00	0.00
Th	³ A	-145.3	13.35	20.38
	⁵ A	-128.94	31.27	41.80
	² A	-193.55	0.00	0.00
Pa	⁴ A	-181.6	13.71	21.29
	⁶ A	-161.99	35.11	41.73
	¹ A	-173.06	1.28	19.75
U	³ A	-172.66	0.00	0.00
	⁵ A	-162.71	12.69	61.61
	² A	-143.61	7.00	8.19
N	⁴ A	-150.89	0.00	0.00
Np	⁶ A	-136.39	16.45	28.19
	⁸ A	-118.76	35.3	49.14
	¹ A	-128.88	15.13	42.69
Dat	³ A	-137.65	6.36	16.09
Pu	⁵ A	-144.01	0.00	0.00
	⁷ A	-133.72	10.29	8.86
	² A	-26.97	37.76	33.40
A 199	⁴ A	-48.84	17.30	15.05
AIII	⁶ A	-65.66	0.00	0.00
	⁸ A	-51.57	15.39	9.53
		-52.48	48.5	98.13
Cm	³ A	-73.97	27.75	22.66
	⁵ A	-100.53	1.01	6.30
	7A	-101.33	0.00	0.00

An-B	Th	Pa	U	Np	Pu	Am	Cm
1	2.676	2.635	2.628	2.596	2.633	2.642	2.645
2	3.085	3.035	2.997	2.979	2.972	2.969	3.030
3	2.748	2.713	2.708	2.732	2.724	2.730	2.713
4	2.693	2.622	2.562	2.608	2.596	2.593	2.604
5	2.676	2.635	2.628	2.596	2.633	2.642	2.645
6	3.085	3.035	2.997	2.979	2.972	2.969	3.030
7	2.861	2.765	2.671	2.646	2.694	2.705	2.772
8	2.693	2.622	2.562	2.608	2.596	2.593	2.604
9	2.789	2.781	2.785	2.734	2.742	2.755	2.760
10	2.693	2.622	2.562	2.608	2.596	2.593	2.604
11	2.861	2.765	2.671	2.646	2.694	2.705	2.772
12	2.779	2.730	2.696	2.723	2.680	2.676	2.682
13	2.861	2.765	2.671	2.646	2.694	2.705	2.772
14	3.085	3.035	2.997	2.979	2.972	2.969	3.030
15	2.779	2.730	2.696	2.723	2.680	2.676	2.682
16	2.789	2.781	2.785	2.734	2.742	2.755	2.760
17	2.748	2.713	2.708	2.732	2.724	2.730	2.713
18	2.748	2.713	2.708	2.732	2.724	2.730	2.713
19	2.676	2.635	2.628	2.596	2.633	2.642	2.645
20	2.676	2.635	2.628	2.596	2.633	2.642	2.645
21	2.748	2.713	2.708	2.732	2.724	2.730	2.713
22	2.861	2.765	2.671	2.646	2.694	2.705	2.772
23	3.085	3.035	2.997	2.979	2.972	2.969	3.030
24	2.693	2.622	2.562	2.608	2.596	2.593	2.604
Ave.	2.808	2.754	2.718	2.715	2.722	2.726	2.747

Table S2. The bond length (Å) of An-B in AnB_{24} at the PBE/TZ2P level of theory.

Table S3. The multiplicities and the relative energies (ΔE , kcal/mol) compared with the most stable multiplicity isomer for AnB₂₄H₂₄.

An	State	ΔE_{pbe}	$\Delta E_{DLPNO-CCSD(T)}$
Th	^{1}A	0.00	0.00
111	³ A	24.00	29.01
Do	² A	0.00	0.00
Pa	^{4}A	46.81	55.37
	^{1}A	0.00	0.00
U	³ A	20.49	32.98
	⁵ A	49.59	60.92

	^{2}A	14.37	48.57
Np	⁴ A	0.00	0.00
	⁶ A	33.23	75.25
	¹ A	21.10	67.60
Du	³ A	12.47	27.17
Pu	⁵ A	0.00	0.00
	⁷ A	12.47	19.53
	² A	38.76	48.70
A	⁴ A	20.62	41.65
AIII	⁶ A	0.00	0.00
	⁸ A	10.94	17.95
	¹ A	53.06	98.55
Cm	³ A	54.39	77.04
	⁵ A	23.34	66.02
	⁷ A	0.00	0.00

Table S4. The bond length (Å) of An-B in $AnB_{24}H_{24}$ at the PBE/TZ2P level of theory.

An-B	Th	Ра	U	Np	Pu	Am	Cm
1	2.551	2.718	2.889	2.564	2.633	2.742	2.597
2	2.539	2.503	2.453	2.596	2.609	2.486	2.621
3	2.627	2.709	2.779	2.563	2.665	2.775	2.833
4	2.632	2.804	2.611	2.716	2.705	2.721	2.675
5	2.632	2.701	2.684	2.652	2.663	2.776	2.804
6	2.706	2.721	2.629	2.729	2.664	2.718	2.636
7	2.605	2.573	2.667	2.397	2.420	2.535	2.591
8	2.639	2.622	2.639	2.469	2.481	2.528	2.682
9	2.623	2.680	2.842	2.485	2.513	2.646	2.762
10	2.753	2.772	2.747	2.700	2.711	2.774	2.823
11	2.523	2.500	2.561	2.567	2.705	2.523	2.505
12	2.572	2.444	2.505	2.490	2.438	2.366	2.444
13	2.548	2.443	2.368	2.687	2.575	2.456	2.532
14	2.579	2.586	2.410	2.660	2.702	2.520	2.485
15	2.642	2.546	2.512	2.698	2.508	2.641	2.468
16	2.616	2.444	2.518	2.463	2.437	2.366	2.409
17	2.641	2.707	2.591	2.658	2.674	2.717	2.742
18	2.760	2.601	2.759	2.447	2.480	2.527	2.513
19	2.677	2.648	2.896	2.725	2.708	2.770	2.811
20	2.688	2.832	2.529	2.634	2.637	2.735	2.588
21	2.600	2.554	2.450	2.567	2.588	2.508	2.627

22	2.547	2.596	2.468	2.628	2.605	2.485	2.556
23	2.644	2.556	2.468	2.731	2.680	2.491	2.612
24	2.673	2.528	2.518	2.588	2.583	2.510	2.523
Average	2.626	2.616	2.604	2.601	2.599	2.597	2.618

Table S5	5. The	multiplici	ties and 1	the rela	ative e	nergies	(ΔΕ,	kcal/mol)	compared	with	the r	nost	stable
multiplici	ity isor	mer for A	$nB_{24}H_{12}$.										

structure	State	ΔE_{pbe}
T1-	¹ A	0.00
In	³ A	9.10
Da	² A	0.00
Fa	⁴ A	11.30
	¹ A	0.00
U	³ A	40.55
	⁵ A	53.89
	² A	45.74
Np	⁴ A	0.00
	⁶ A	28.46
	¹ A	40.16
Du	³ A	43.24
Pu	⁵ A	38.23
	⁷ A	0.00
	² A	67.71
A m	⁴ A	90.36
AIII	⁶ A	16.70
	⁸ A	0.00
	¹ A	123.05
	³ A	114.90
Cm	5A	28.02
	⁷ A	0.00
	⁹ A	5.71

Table S6.	The bond	length (Å)	of An-B for	AnB ₂₄ H ₁₂ at the	PBE/TZ2P	level of theory
-----------	----------	------------	-------------	--	----------	-----------------

An-B	Th	Pa	U	Np	Pu	Am	Cm
1	3.945	2.691	3.809	2.864	3.297	2.726	2.623
2	2.563	2.440	2.446	2.668	2.687	2.871	2.797
3	2.645	2.558	2.431	2.596	2.506	2.787	2.638
4	2.908	2.722	2.828	2.507	2.530	2.819	2.755
5	2.666	2.601	2.351	2.661	2.382	2.811	3.235
6	2.790	2.717	2.619	3.560	2.880	2.556	3.635

7	2.921	2.492	2.773	3.641	2.860	2.746	3.650
8	2.556	2.202	2.405	3.145	2.819	2.639	3.350
9	2.980	2.544	2.928	3.742	3.543	2.936	3.304
10	2.625	2.309	2.521	2.637	2.644	2.815	3.622
11	2.761	2.460	2.586	3.504	2.514	4.656	2.694
12	3.983	2.468	3.805	3.943	2.644	4.118	2.528
13	2.888	2.380	2.753	2.531	3.049	4.100	2.718
14	2.873	3.355	2.665	2.776	2.641	4.391	2.595
15	3.514	3.832	3.545	2.786	3.104	3.872	2.897
16	3.266	2.556	3.211	2.627	2.715	4.163	2.745
17	3.146	2.978	2.871	2.792	2.315	3.361	3.705
18	3.418	3.074	3.515	2.291	2.841	3.875	4.443
19	2.983	2.991	2.765	2.616	2.668	3.862	3.630
20	3.776	3.080	3.703	2.355	2.619	3.560	4.023
21	3.812	2.671	2.862	2.920	2.385	4.037	4.204
22	4.175	3.649	3.342	2.610	2.836	3.458	3.861
23	3.650	3.626	3.016	2.406	2.769	3.722	3.997
24	3.540	3.796	2.824	3.763	2.629	3.807	4.037
Average	3.183	2.841	2.941	2.914	2.745	3.445	3.320

ISO1 ³C_{2v} 0.00

ISO6 ³C_s 11.29

ISO11 ³C₁ 32.90

ISO7 ³C₁ 11.48

ISO12 ³C₁ 34.36

ISO2 ³C_{2v} 2.28

ISO3 ³C₁ 8.34

ISO8 ³C₁ 16.42

ISO13 ⁵C₁ 32.52

ISO14 ³C₁ 41.99

ISO4 ³C₁ 10.90

ISO9 ¹C₁ 21.88

ISO5 ³C_{2v} 10.96

ISO10 ³C₁ 27.17

ISO15 ³C₁ 42.29

Figure S1. The global minimum and low-lying isomers of UB_{24} . Relative energies for the isomers of UB_{24} are given in kcal/mol at the PBE/TZ2P levels of theory.

U(BH)₅

U(BH)₉

U(BH)₈

U(BH)₁₀

U(BH)₁₄

U(BH)₁₈

U(BH)₁₅

U(BH)₁₉

U(BH)₁₆

U(BH)₂₁

U(BH)₁₁

U(BH)₁₂

Figure S2. The optimized geometries for $U(BH)_n$ (n = 1 to 24) at PBE/TZ2P level.

Figure S3. The optimized geometries for $An(BH)_{24}$ (An = Th to Cm) at PBE/TZ2P level.

Figure S4. The fcc structure of PuB_{12} (left); Boron polyhedral structure of PuB_{12} (right)showing the large B_{24} truncated octahedron, centered by the Pu atoms as well as the empty B_{12} cuboctahedral polyhedra. Pu in dark blue and B in red.