Supporting Information

In situ X-ray emission and high-resolution X-ray absorption spectroscopy applied to Ni-based Bimetallic Dry Methane Reforming Catalysts

Abbas Beheshti Askari^(a), Mustafa al Samarai^(a), Nozomu Hiraoka^(b), Hirofumi Ishii^(b) Lukas Tillmann^(c), Martin Muhler^{*(a, c)} and Serena DeBeer^{*(a)}

(a) Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, D-45470 Mülheim an der Ruhr, Germany

(b) National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan (c) Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, D-44780 Bochum, Germany

Figure S1

Figure S1: Flow scheme of the reactor used for the DMR activity measurements.

Figure S2: Reference Ni XES spectra of Ni foil.

Figure S3: Reference Co XES spectra of Co foil.

Figure S4

Figure S4: A) The sample powder is pressed into a pellet that is located in the sample holder. The heating stage allows heating up to 600°C. B) image showing that interior of the used reactor. C) Operational reactor setup used in this experiment. During this process the Incident X-ray beam enters the reactor from the window covered with Kapton tape and the scattered emission is measured from the 90° angle.

Figure S5: Schematic illustration of the hard X-ray experiments. In the first stage of the experiment the calcined samples were measured at 25 °C under air. The next step involves heating the sample under reducing conditions. In the last step the sample is exposed to DMR conditions.

Table S1

Table S1: Stabilized conversion/yield values for the NiCoO/ γ -Al₂O₃ and NiO/ γ -Al₂O₃ DMR catalysts.

	NiCoO/γ-Al₂O₃	NiO/γ-Al ₂ O ₃
CH₄ Conversion (%)	79	46
CO₂ Conversion (%)	71	43
H2 Yield (%)	70	39
CO Yield (%)	73	44
H₂O Yield (%)	9	5

Figure S6: Conversion/Yield values of the NiCoO catalyst during the DMR experiment at 750 °C, 600 °C, 500 °C and 450 °C with 7% CH₄, 9.5 % CO₂ in N₂ and a flow rate of 490 mL/min.

Figure S7: Overlay of the XES spectra for the NiO and NiCoO calcined catalysts.

Table S2

	NiO/γ-Al ₂ O ₃	NiCoO/γ-Al ₂ O ₃
Calcined	8264.50 eV	8264.44 eV
Reduced at 150 °C	8264.45 eV	8264.14 eV
Reduced at 300 °C	8263.72 eV	8263.32 eV
Reduced at 450 °C	8263.57 eV	8264.10 eV
Reduced 600 °C	8263.48 eV	8263.99 eV
DMR 5 hours	8263.40 eV	8263.68 eV

Table S2: $K\beta_{1,3}$ peak position for both NiO/ γ -Al₂O₃ and NiCoO/ γ -Al₂O₃ catalysts measured under activation and DMR conditions.

Figure S8: Overlay of the XES spectra for the NiO and NiCoO catalyst after being reduced at 150 °C.

Figure S9: Overlay of the XES spectra for the NiO and NiCoO catalyst after being reduced at 300 °C.

Figure S10: Overlay of the XES spectra for the NiO and NiCoO catalyst after being reduced at 450 °C.

Figure S11: A combination of NiO XES spectra showing the calcined NiO (dark blue), the fully reduced NiO (dark green) and NiCoO (light green) at 450°C. Furthermore, several average spectra were obtained by mixing the spectra of the calcined and reduced NiO sample at 450 °C.

Figure S12: Overlay of the XES spectra for the NiO and NiCoO catalyst after being reduced at 600 °C.

Figure S13

Figure S13: Overlay of the XES spectra for the NiO and NiCoO catalyst after being exposed to DMR conditions for 5 hours.

Figure S14: Overlay of the XES spectra for the NiO and NiCoO catalyst after being exposed to DMR conditions for 25 and 15 hours respectively.

Figure S15

Figure S15: Overlay of the HERFD spectra for the NiO and NiCoO calcined catalysts.

Figure S17: Overlay of the HERFD spectra for the NiO and NiCoO catalyst after being reduced at 300 °C.

Figure S18: Overlay of the HERFD spectra for the NiO and NiCoO catalyst after being reduced at 450 °C.

Figure S19: Overlay of the HERFD spectra for the NiO and NiCoO catalyst after being reduced at 600 °C.

Figure S20: A combination of NiO HERFD spectra showing the calcined NiO (dark blue), the fully reduced NiO and NiCoO at 450 °C.

Figure S21: Overlay of the HERFD spectra for the NiO and NiCoO catalyst after being exposed to DMR conditions for 3 hours.

Figure S22: Overlay of the HERFD spectra for the NiO and NiCoO catalyst after being exposed to DMR conditions for 23 and 13 hours respectively.

Figure S23: Overlay of the NiCoO HERFD spectra for the catalyst reduced at 450 and 600 °C.