Supporting Information

Engineering Cobalt Oxide by Interfaces and Pore Architectures for Enhanced Electrocatalytic Performance for Overall Water Splitting

Lin-Fei Gu, Jun-Jia Chen, Tao Zhou, Xue-Feng Lu* and Gao-Ren Li*

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China

Figure S1. SEM images of $Co_2(OH)_2CO_3@ZIF-67$ CSNSAs on Ni foam with different reaction time: (a-b) 6 h, (c-d) 8 h, and (e-f) 12 h.

Figure S2. XRD patterns of Co₂(OH)₂CO₃ NWAs and Co₂(OH)₂CO₃@ZIF-67 CSNSAs.

Figure S3. SEM images with different magnifications of mes-CoO NWAs on Ni foam.

Figure S4. TEM image of a single core-shell structured Co₂(OH)₂CO₃@ZIF-67 nanowire.

Figure S5. TEM image of mes-CoO NWAs.

Figure S6. (a) XPS survey spectra of mes-CoO NWAs and mac-CoO@Co/NGC NSAs, and high resolution XPS spectra of (b) O 1s for mes-CoO NWAs and mac-CoO@Co/NGC NSAs, (c) N 1s for mac-CoO@Co/NGC NSAs.

Figure S7. CVs of (a) mes-CoO NWAs and (b) mac-CoO@Co/NGC NSAs measured in 1.0 M KOH solution.

Figure S8. Equivalent circuit used for fitting the Nyquist plots, which consists of a series resistance R_s (the ohmic resistance) in series with two parallel branches: one reflecting the charge-transfer process (C_{d1} - R_{ct}) and the other related to the surface porosity (C_{d2} - R_p).

Figure S9. SEM images with different magnifications of mac-CoO@Co/NGC NSAs at anode for OER after full water splitting test for 35 h.

Figure S10. SEM images with different magnifications of mac-CoO@Co/NGC NSAs at cathode for HER after full water splitting test for 35 h.

Figure S11. XRD patterns of mac-CoO@Co/NGC before and after electrolysis test. The peaks indicated by dotted line come from carbon paper electrode.

Catalysts	η@J (mV@mA cm ⁻²)	Tafel slope $(mV dec^{-1})$	References
mac-CoO@Co/NGC NSAs	300@50	38	This work
Co ₃ O ₄ /graphene	310@10	67	Nat. Mater. 2011, 10, 780
Co ₃ O ₄ /C NWAs	290@10	70	J. Am. Chem. Soc. 2014 , 136, 13925
Co ₃ O ₄ /NiCo ₂ O ₄ nanocages	340@10	88	J. Am. Chem. Soc. 2015 , 137, 5590
CoMn-LDH	324@10	43	J. Am. Chem. Soc. 2014 , 136, 16481
Zn _x Co _{3-x} O ₄ NWAs	320@10	51	Chem. Mater. 2014, 26, 1889
Hollow Co ₃ S ₄ NSs	355@10	40	Angew. Chem. Int. Ed. 2015 , 127, 11383
CoCo LDH	380@10	59	Nat. Commun. 2014, 5, 4477
N-doped graphene-CoO	340@10	67	Energy Environ. Sci. 2014 , 7, 609
Co-PNCNFs	285@10	73	J. Mater. Chem. A 2016, 4, 12818
Co@N-C	400@10	N.A.	J. Mater. Chem. A 2014, 2, 20067
Fe-Ni(OH) ₂ /NF	267@10	51.5	Chem. Commun. 2018, 54, 463
$Co(S_xSe_{1-x})_2$	283@10	65.6	<i>Adv. Funct. Mater.</i> 2017 , <i>27</i> , 1701008
CoFePO/NF	274.5@10	51.7	ACS Nano, 2016 , 10, 8738
F-Co ₂ B	320@10	32	Energy Environ. Sci. 2019,12, 2443

Table S1. Comparison of representative cobalt-based OER electrocatalysts in alkaline electrolyte(1.0 M KOH solution).

Catalysts	η@10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	References
mac-CoO@Co/NGC	140	94	This work
CoP/CC	67	129	J. Am. Chem. Soc. 2014, 136, 7587
CoO _x @CN	232	N.A.	J. Am. Chem. Soc. 2015, 137, 2688
Co-P film	94	42	Angew. Chem. Int. Ed. 2015 , 54, 6251
Co/N-doped carbon	260	91	ACS Nano 2016 , 10, 684
NiCo ₂ S ₄ nanowires	N.A.	141	Nanoscale 2015 , 7, 15122
Co-PNCNFs	249	92	J. Mater. Chem. A 2016, 4, 12818
Co@CN	210	108	J. Mater. Chem. A 2014 , 2, 20067
Co _{0.59} Fe _{0.41} P	99	72	Nanoscale 2015, 7, 11055
NiCoP/CNT	80	62	Electrochim. Acta. 2017, 252, 101
CoP ₂ /RGO	88	50	J. Mater. Chem. A. 2016, 4, 4686
Co-NRCNTs	370	N.A.	Angew. Chem. Int. Ed. 2014, 53, 4372
CoP-MNAs	54	51	Adv. Funct. Mater. 2015, 25, 7337
Mo_5N_6	94	66	ACS Nano 2018, 12, 12761
Cu-CoP NRAs/CC	81	102	ACS Appl. Energy Mater. 2018, 1, 3835

Table S2. Comparison of representative cobalt-based HER electrocatalysts in alkaline electrolyte

 (1.0 M KOH solution).

Catalysts	$\mathbf{E}_{J=10}\left(\mathbf{V}\right)$	References
mac-CoO@Co/NGC NSAs	1.62	This Work
CoO-CNF	1.63	Nat. Commun. 2015, 6, 7261
CoP-MNA	1.62	Adv. Funct. Mater. 2015, 25, 7337
Ni ₂ P	1.63	Energy Envoiron. Sci. 2015, 8, 2347
NiSe-NWs	1.63	Angew. Chem. Int. Ed. 2015, 32, 9483
NiFe-LDHs	1.7	Science 2014 , 345, 1593
Co ₃ O ₄ -MTAs	1.63	Angew. Chem. Int. Ed. 2017, 56, 1324
Co-PNCNFs	1.66	J. Mater. Chem. A 2016, 4, 12818
EG/Co _{0.85} Se/NiFe-LDH	1.67	Energy Environ. Sci. 2016 , 9, 478
NiCo ₂ O ₄	1.65	Angew. Chem. Int. Ed. 2016, 55, 6290
CP/CTs/Co-S	1.74	ACS Nano 2016 , 10, 2342
NiS/Ni foam	1.64	Chem. Commun. 2016, 521, 486
PNC/Co	1.64	J. Mater. Chem. A 2016, 4, 3204
Co-P/NC	1.71	Chem. Mater. 2015, 27, 7636
Co-Se1//Co-Se4	1.84	Adv. Energy Mater. 2018, 8, 1801926
MoS ₂ /NiFe LDH superlattice	1.57	Nano Lett. 2019, 19, 4518
Pt-CoS ₂ /CC	1.55	Adv. Energy Mater. 2018, 8, 1800935

Table S3. Comparison of overall water splitting performance of mac-CoO@Co/NGC NSAs with recently reported bi-functional electrocatalysts in alkaline electrolyte (1.0 M KOH solution).

η: Overpotential (mV);

J: Current density (mA cm⁻²); CNF: Carbon nanofiber; CNT: Carbon nanotube; MNA: Mesoporous nanorod arrays; NWs: Nanowires; MTAs: Microtube arrays; NWAs: Nanowire arrays; NRAs: Nanorod arrays; NSs: Nanosheets. PNCNFs: Porous nitrogen doped carbon nanofibers; NC/CN: N-doped carbon. CC: Carbon cloth; NRCNTs: Nitrogen-rich carbon nanotubes; MNAs: Mesoporous nanorod arrays.