Supporting Information

Pt nanoparticles-decorated two-dimensinal oxygendeficient TiO_2 nanosheet as an efficient and stable electrocatalyst for hydrogen evolution reaction

Keerti M. Naik*, Eiji Higuchi, Hiroshi Inoue*

Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan

Fig. S1. (a) XRD pattern of Pt-TiO_{2-x}NSs compared with standard patterns.

Fig. S2. TEM images of (a) $TiO_2 NSs$, (b) Pt-TiO_2 NSs and (c) particle size distribution profile of Pt-TiO_2 NSs.

Fig. S3. (a) SEM images and elemental maps of (b) Ti, (c) O, (d) Pt and (e) their superposition for Pt-TiO_{2-x} NSs.

Fig. S4. (a) Wide scan spectra of Pt-TiO_{2-x} NSs (C is the carbon observed from the substrate i.e, carbon tap), the corresponding high resolution (b) Ti 2p and (c) O 1s spectra.

Fig. S5. Nitrogen adsorption-desorption isotherms of $Pt-TiO_2$ NSs and $Pt-TiO_{2-x}$ NSs.

Fig. S6. (a) The equivalent circuit used to fit the experimental data from Nyquist plots and (b) Nyquist plots of Pt-TiO_{2-x} NSs before and after stability experiment.

Fig. S7. XPS spectra of (a) Ti 2p and (b) Pt 4f of Pt-TiO_{2-x} NSs before and after stability experiment.

Fig. S8. Cyclic voltammograms of $Pt-TiO_{2-x}$ NSs, $Pt-TiO_2$ NSs and Pt/C in Ar-saturated 0.5 M H_2SO_4 solution.

solution of Pt-TiO $_{2-x}$ NSs with other reported Pt supported electrocatalyst.

	Electrolyte	Overpotential	Tafel	Stability	Reference
Catalyst		@10 mA/cm ²	slope		
		(mV)			
Pt/def-	0.5 M H ₂ SO ₄	42	61	-	1
WO ₃ @CFC					
Pt/NPC	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	15	36.3	35 h (8 mV)	2
Pt@NHPCP	0.1 M HClO ₄	57	27	-	3
Pt NWs/SL-	1М КОН	67.8	-	-	4
Ni(OH)					
Pt NPs/SL-	1М КОН	85.2	-	-	4
Ni(OH)					
Pt/Ni	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	36	43	5.5 h (50 mV)	5
GaPt ₃	$0.5 \text{ M H}_2\text{SO}_4$	27	43.3	48 h (300 mV)	6
	1.0 M KOH	48	63.1		
	1.0 M PBS	103	85.3		
Pt SA/WO _{3-x}	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	47	45	-	7
Pt ₁ /MoO _{3-x} /C	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	23.3	28.8	-	8
Pt-MoS ₂	$0.1 \text{ M H}_2\text{SO}_4$	144	96	-	9
Pt-GDY	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	66	46.6	2.7 h (95 mV)	10
Pt/WS ₂	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	80	55	-	11
Pt@PCM	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	105	65.3	5 h (150 mV)	12
	1.0 M KOH	150	73.6		
Pt- MoS ₂ /NiS ₂	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	52	40	72 h (10,20,50	13
				mAcm ⁻²)	
Pt-TiO _{2-x} NSs	0.5 M H ₂ SO ₄	36	32.1	50 h (50 mV)	Present
	1.0 M KOH	69	50.2		work
	1.0 M PBS	87	67.6		

References

 H. Tian, X. Cui, L. Zeng, L.Su, Y. Song and J. Shi, J. Mater. Chem. A, 2019, 7, 6285-6293.

C.H. Wang, F. Hu, H.C. Yang, Y.J. Zhang, H. Lu and Q.B. Wang, *Nano Res.*, 2017, 10, 238-246.

J. Ying, G.P. Jiang, Z.P. Cano, L. Han, X.Y. Yangand , Z.W. Chen, *Nano Energy*, 2017,
40, 88-94.

- H.J. Yin, S.L. Zhao, K. Zhao, A. Muqsit, H.J. Tang, L. Chang, H.J. Zhao, Y. Gao and Z.Y. Tang, *Nat. Commun.*, 2015, 6, 6430.
- 5 M.S. Xiao, R. Cheng, M.F. Hao, M. Zhou and Y.Q. Miao, *ACS Appl. Mater. Inter.*, 2015, 7, 26101-26107.

6 S.C. Lim, C.Y. Chan, K.T. Chen and H.Y. Tuan, *Electrochimica Acta*, 2019, **297**, 288-296.

7 J. Park, S. Lee, H.E. Kim, A. Cho, S. Kim, Y. Ye, J.W. Han, H. Lee, J.H. Jang and J. Lee, *Angew. Chem. Int. Ed.*, 2019, **58**, 16038-16042.

- W. Liu, Q. Xu, P. Yan, J. Chen, Y. Du, S. Chu and J. Wang, *ChemCatChem*,2018, 10, 946-950.
- 9 J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng, H. Yang, H. Tian, J. Li, P. Ren and X. Bao, *Energy Environ. Sci.*, 2015, 8, 1594-1601.

10 X.P. Yin, H.J. Wang, S.F. Tang, X. L. Lu, M. Shu, R. Si and T.B. Lu, *Angew. Chem. Int. Ed.*, 2018, **57**, 9382-9386.

- 11 Y. Zhang, J. Yan, X. Ren, L. Pang, H. Chen and S. Liu, *International Journal of hydrogen Energy*, 2017, **42**, 5472-5477.
- H. Zhang, P. An, W. Zhou, B.Y. Guan, P. Zhang, J. Dong and X.W. Lou, *Sci. Adv.*, 2018, 4,6657.
- Y. Guan, Y. Feng, J. Wan, X. Yang, L. Fang, X. Gu, R. Liu, Z. Huang, J. Li, J. Luo,C. Li and Y. Wang, *Small*, 2018, 14, 1800697.

7