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I. DENSITY MATRIX FORMALISM

A. Electronic Hamiltonian

The Starting point is the electronic Hamiltonian in
second quantization with monolayer eigenstates as basis
function. Here the wave functions of conduction (λ = c)
and valence band electrons (λ = v) in layer l are de-
scribed with tight-binding wave functions in the vicinity
of high symmetry points ζ of the Brillouin zone. Using
compound indices i = (li, ζi) these read [1]:

Ψλ
ik(r) =

1√
N

∑
Ri

ei(ζi+k)RiΦλi (r−Ri). (1)

Here Φ represents the effective orbital composing the re-
spective band. Within this basis, the interaction-free
part of the bilayer Hamiltonian reads

H = H0 +HT

=
∑
λ,i,k

ελikλ
†
ikλik +

∑
λ,k,q,i6=j

Tλij(q,k)λ†ik+qλjk (2)

In the close vicinity of ζi the band structure is approx-
imated parabolic ελik = ελi0 ± ~2k2/(2mλ

i ) and the tun-
neling matrix element Tλij(q,k) = 〈λi,k + q|Vl|λj,k〉 de-
pends on the bilayer lattice potential Vl. To determine
the tunnelling matrix element, we follow the derivation
in Ref. [1] which yields

Tλij(q,k) =
∑
GiGj

hλij(k + ζj + Gj)δq,ζj+Gj−ζi−Gi

× ei(Gjr
0
j−Gir

0
i ) (3)

Here Gi and r0
i denote the reciprocal lattice vec-

tor and a constant lattice shift in real space re-
spectively. The tunnelling strength is given by
the hopping integral in momentum space hλij(k) =

1/Auc
´
dReikR

´
drΦλi (r)V̂lΦ

λ
i (r − R). Equation 3 can

be further simplified by assuming a long range interlayer
interaction, viz. quickly decaying hopping integrals in
momentum space. In this case, we only sum over recip-
rocal vectors with |ζj +Gj | = |ζj |, which for valleys deep
within the Brillouin zone yield [1],

Tλij(q,k) ≈ hλζjδq,ζj−ζi , for ζi, ζj = Λ,Λ′,Γ. (4)

In contrast, for electrons at the K point we have to con-
sider the reciprocal vectors connecting two corners of the
Brillouin zone, e.g. K and the 120◦ rotated C3K. In this
case we have to account for the angular symmetry of the
d-orbitals composing states at the K point. Hence we
find [1, 2]

Tλij(q) ≈
2∑

n=0

hλζjθ
λn
ij δq,Cn

3 (ζj−ζi), ζi, ζj = K,K ′. (5)

The additional phase factors account for orbital sym-
metries at the K point, as well as phase cancellations
resulting from lateral shifts of the two layers: θλnij =

exp(in2π/3∆l+ i(Cn3 ζj − ζj)r0j − i(Cn3 ζi − ζi)r0i), with
∆l = ±1 for λ = c and anti-parallel stacking (AP), but
∆l = 0 else. In the following we will use the more general
form in Eq. 5 but keep in mind that for ζi, ζj = Λ,Λ′,Γ
we have to set θλnij = δn,0. The interlayer hopping
strength h for different bands and high symmetry points
can be extracted from band splittings obtained in DFT
calculations (cf. Section II).

B. Exciton Transformation and Hybridization

We transform the Hamiltonian into the exciton basis in
order to account for the Coulomb interaction on Hartree-
Fock level. The Hamiltonian reflecting the attraction be-
tween electrons and holes reads,

HC =
∑
ijkk′q

W ij
q c
†
ik+qv

†
jk′−qvjk′cik. (6)

The matrix elementW ij
q is treated within a semi-classical

approach analogous to the Keldysh potential, however
assuming two anisotropic dielectric slabs to model the
screening created by the TMD bilayer system [3, 4]. Here
we use ab initio parameters from Ref. [5] for the dielec-
tric tensor of WSe2 and εsub = (3.9 + 1)/2 for a SiO2

substrate. To diagonalize the full Hamiltonian, we first
transform into the eigenbasis of H = H0 + HC by using
the exciton Hamiltonian formalism [6, 7]. To this end we
define electron-hole pair operators

P †ik,jk′ = c†ikvjk′ , (7)
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together with the low density pair expansion

c†ikcjk′ ≈
∑
lp

P †ik,lpPjk′,lp (8)

v†ikvjk′ ≈ δijkk′ −
∑
lp

P †lp,jk′Plp,ik (9)

After expressing the problem in terms of pair operators,
we can diagonalize H = H0 +HC by expanding the pairs
in terms of excitons Xij

µQ with center-of-mass momentum
Q:

P †ik,jk′ =
∑
µ

Xµ
ij,k−k′

†
ψµij(αijk

′ + βijk) (10)

with mass factors αij(βij) = mc
i (m

v
j )/m

c
i + mv

j and the
wave function ψµij(k) for intra- (li = lj) and interlayer
excitons (li 6= lj). The latter fulfil the bilayer Wannier
equation

~2k2

2mr
ij

ψµij(k)−
∑
q

W ij
q ψ

µ
ij(k + q) = Eµij0ψ

µ
ij(k), (11)

with the binding energy Eµij0 depending on the reduced
mass mr

ij = (mc
im

v
j )/(m

c
i + mv

j ). In the following, we
restrict our consideration to the exciton ground state µ =
1s. Hence, the excitonic Hamiltonian reads

H =
∑
ijQ

EijQX
†
ijQXijQ

+
∑

i6=j,l,Q,q

T̃ cil,jl(q)X†jl,Q+qXil,Q

−
∑

i6=j,l,Q,q

T̃ vli,lj(q)X†lj,Q+qXli,Q (12)

with exciton tunnelling matrix elements

T̃ cil,jl(q) = T cji(q)Fil,jl(βjlq) (13)

T̃ vli,lj(q) = T vij(q)Fli,lj(−αjlq) (14)

Fij,nm(q) =
∑
k

ψij(k)∗ψnm(k + q). (15)

Now the Hamiltonian in Eq. 12 is diagonalized numeri-
cally. Here it is convenient to transform the discrete mix-
ing of periodic momenta, cf. Eq. 5, into an interaction
of subbands created through the moiré superlattice. To
this end we introduce a valley specific zone folding with
exciton subbands X̃†ζα,Q = X†ζeleζhlh,Q−ζe+ζh+nb1+mb2

.
Here we have introduced new compounds ζ = (ζe, ζh)
and α = (le, lh, n,m) containing valley ζe (ζh) and layer
le (lh) of the electron (hole) as well as the discrete sub-
band index n,m = 0, 1, 2, .... Here the introduced vectors
bn = (Cn3 − 1)(K2 − K1) correspond to the reciprocal
lattice vectors of the moiré lattice and depend on the
mismatch between the K point of the upper (K2) and
the lower layer (K1). Due to the new periodicity of the
resulting problem, we can restrict our consideration to

momenta Q within the first mini-Brillouin zone spanned
by b1 and b2. In the subband basis the Hamiltonian
becomes diagonal in Q ∈ 1st mBZ and reads

H =
∑
αQ

(EζαQX̃
†
ζα,Q +

∑
β

T ζαβX̃
†
ζβ,Q)X̃ζα,Q (16)

with the tunnelling matrix T ζαβ containing the valley
specific selection rules (Eq. 4 and 5) for the mix-
ing of different subbands and layer configurations. Fi-
nally, we introduce new hybrid moiré exciton operators
Y †ζνQ =

∑
α C

ζν
α (Q)∗X̃†ζα,Q, with mixing coefficients ful-

filling EζαQC
ζν
α (Q) +

∑
β T

ζ
αβC

ζν
β (Q) = EζνQCζνα (Q) in

order to diagonalize the Hamiltonian

H =
∑
ζνQ

EζνQY
†
ζνQYζνQ (17)

The resulting eigenstates are valley specific superposi-
tions of different layer configurations as well as integer
multiples of center-of-mass momenta Q + nb1 + mb2

yielding moiré periodic wave functions. Alternative to
the diagonalization procedure outlined above, we could
have also first diagonalized the interaction-free part of
the Hamiltonian of the bilayer, and subsequently consid-
ered excitonic effects resulting from the Coulomb inter-
action. However, the resulting Schroedinger equation for
the exciton would be numerically much more demanding
than the problem in Eq. 16. Moreover, the above cho-
sen approach allows to conveniently interpret the bilayer
physics as consequence of the hybridization of intra- and
interlayer excitonic states.

C. Exciton-Phonon and -Photon Interaction

In the following we will transform the electron-phonon
and electron-photon interaction, whose parametrisation
is known for a monolayer system, into the basis of hy-
bridized moiré excitons derived in the last section. In
the above specified monolayer basis, the electron-photon
interaction reads,

Hel−pt =
∑
ik,σq

miêσqc
†
i,k+q‖

vikbσq + h.c., (18)

with the annihilation operator for σ-polarized photons
bσq, normalization of the photon field êσq and the
electron-light matrix element mi. Note, that the pho-
ton momentum q is three dimensional(with projection
q‖ to the monolayer plane), while the electronic momen-
tum k is strictly two dimensional. We first transform
into an exciton Hamiltonian using the above explained
pair operators, which yields

Hx−pt =
∑
iσq

MiêσqX
†
ii,q‖

bσq + h.c.. (19)

Mi = mi
∑
k

ψii(k) (20)



3

Finally, we expand in terms of hybrid moiré excitons af-
ter regrouping indices into exciton valley ζ and layer sub-
band α, giving rise to the convenient form

Hx−pt =
∑
ζν,σq

M̃ζν êσqY
†
ζν,q‖

bσq + h.c.. (21)

M̃ζν =
∑
α

MleζeCζνα (0)δζeζhδlelhδn,0δm,0 (22)

From Eq. 21 we can directly see some interesting new fea-
tures of the bilayer system. In the monolayer case only
intra layer excitons with centre-of-mass momenta within
the light cone X†ii,q‖

contribute to the interaction with
light (cf. Eq. 19). In contrast, the mixing of different
layer configurations as well as subbands in the bilayer
yield a whole series of bright states. Thereby, the oscilla-
tor strength of a given state ν depends on how strongly
the bright intralayer exciton state is contributing to the
hybrid. From the form of the Hamiltonian in Eq. 21 we
can directly deduce the linear optical response of the sys-
tem. We can in a straightforward manner generalize the
excitonic Elliot formula, so that the absorption coefficient
for σ-polarized light reads,

ασ(ω) ∝
∑
ζν

=m
(

|M̃ζν
σ |2

Eζν0 − ~ω − i(γζν + Γζν)

)
, (23)

where we have introduced a radiative and non-radiative
dephasing γζν and Γζν determining the broadening of ex-
citonic resonances [8].

Next, we determine the exciton-phonon interaction for
the bilayer system. Starting point is again the electronic
Hamiltonian in monolayer basis, which for interaction
with a single phonon mode B†q reads,

Hel−ph =
∑
λijkq

gλijqλ
†
i,k+qλj,k(Bq+ζij +B†−q−ζij )(24)

where ζij = ζi − ζj denotes the connection vector of two
valleys and gλijq corresponds to the electron-phonon ma-
trix element for the intervalley scattering j → i with
phonon momentum q + ζij . The latter is parametrized
in zeroth (first) order deformation potential in case of
optical (acoustic) phonons. The corresponding param-
eters for electrons and holes are taken from the DFPT
based calculation in Ref. [9] for all relevant interval-
ley scattering processes. Moreover, direct interlayer hop-
ping via phonon scattering has been neglected by setting
gλijq ∝ δli,lj . Following the same procedure as for the
tunnelling Hamiltonian, we arrive at the exciton-phonon

Hamiltonian

Hx−ph =
∑
ijlQq

(Gcjl,il(q)X†il,Q+qXjl,Q

− Gvli,lj(q)X†lj,Q+qXli,Q)(Bq+ζij +B†−q−ζij ).(25)

Here we have again introduced excitonic matrix el-
ements [10, 11] analogue to the tunnelling Hamil-
tonian, Gcjl,il(q) = gcijqFjl,il(βilq) and Gvli,lj(q) =
gvijqFli,lj(−αljq). Next, we expand the Hamiltonian in
terms of bilayer hybrid excitons Y again using valley and
subband compound indices, which yields the final expres-
sion

Hx−ph =
∑

ζζ′νν′Qq,∆n,∆m

G̃ζν,ζ
′ν′

∆n,∆m(Q,q)

× Y †ζ′ν′Q+qYζνQ(Bq̃ +B†−q̃) (26)

with the transferred phonon momentum q̃ = q+∆nb1 +
∆mb2 and the interaction matrix element for hybridized
states

G̃ζν,ζ
′ν′

∆n,∆m(Q,q) =
∑
αα′

(Gcζα,ζ′α′(q̃−∆Qζζ′)δζhζ′h

− Gvζα,ζ′α′(q̃−∆Qζζ′)δζeζ′e)

× Cζνα (Q)∗Cζ
′ν′

α′ (Q + q)

× δlel′eδlhl′hδn′−n,∆nδm′−m,∆m. (27)

Here the original exciton-phonon matrix elements G are
evaluated at the momentum transfer measured in local
valley coordinates, so that ∆Qζζ′ = ζ ′e − ζ ′h − ζe + ζh.
Note, that although the electron-phonon scattering set
up initially was conserving the layer of the electron, the
hybridization of excitonic states does effectively allow
for a phonon-assisted transfer of charges between lay-
ers. Equation 26 indicates that in principle scatterings
between all hybrid states ν are allowed, including e.g.
those between a state with the electron mostly local-
ized in the upper layer and a state where the electron
is predominantly in the lower layer. The strength of
such a process is however given by a superposition of
the scattering strengths between the underlying intra-
and interlayer exciton states composing the hybrids (Eq.
27). Given the generic form of Eq. 26 we can in anal-
ogy to Ref. [12] determine the photoluminescence signal
of the bilayer, including phonon-assisted recombination
processes. Assuming Boltzmann distributions Nζ

νQ for
the hybridized excitons and phonon occupation factors
η±q = 1/2∓ 1/2 + nB(Ωq) (with Bose-distribution nB at
the phonon energy Ωq) the luminescence intensity per-
pendicular to the bilayer plane reads

Iσ(ω) ∝
∑
ζν

|M̃ζν
σ |2

(Eζν0 − ~ω)2 + (γζν + Γζν)2

(
γζνN

ζ
ν0 +

∑
ζ′ν′q̃,±

|G̃ζ
′ν′,ζν

∆n,∆m(0,q)|2Nζ′

ν′qη
±
q̃

Γζ
′

ν′

(Eζ′ν′q ± Ωq̃ − ~ω)2 + (Γζ
′

ν′)2

)
,(28)
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where the sum over q̃ abbreviates summing over q,
∆n and ∆m. Our numerical implementation of Eq.
28 shows that for recombination processes of K-K
excitons assisted by acoustic Γ-phonons, the contri-
bution of terms with ∆n,∆m > 0 are negligible due
to the weak hybridization at the K point (see main
text). For all other phonon-assisted recombination
processes the phonon energy is almost independent of
the momentum (Einstein approximation), so that the
sum over q̃ can be simlified:

∑
q̃ |G̃

ζ′ν′,ζν
∆n,∆m(0,q)|2f(q̃) ≈∑

q |D
ζ′ζ
ν′ν(q)|2f(q) with the effective cross section

|Dζ′ζ
ν′ν(q)|2 = |G̃ζ

′ν′,ζν
0,0 (0,q)|2 for acoustic Γ-phonons and

|Dζ′ζ
ν′ν(q)|2 =

∑
∆n,∆m |G̃

ζ′ν′,ζν
∆n,∆m(0,q)|2 else.

The dephasing rates γζν and Γζν determining the broad-
ening in the absorption (Eq. 23) and luminescence spec-
trum (Eq. 28) can in principle be microscopically cal-
culated in analogy to the method used in [8] using the
modified electron-phonon and -photon matrix elements
derived for the layer hybridized moiré excitons Y . How-
ever, in this work we focus on the energetic position
and general spectral shape of resonances and therefore
choose a phenomenological temperature dependence of
the linewidth in Fig. 4a-d in the main text. To this end,
we choose a constant radiative dephasing γK−K = 1 meV
and temperature dependent phonon-induced dephasing
of ΓK−K(T ) = 5 meV+(50 µeV/K) T. Since the mo-
mentum dark K-Λ exciton does not have any lower lying
phonon emission channels, the phonon-induced dephas-
ing is set to be significantly lower ΓK−Λ = ΓK−K/2. This
set of dephasing rates is in qualitative agreement with the
microscopically calculated dephasing rates in monolayer
WSe2 [12] and yields a good qualitative agreement with
the experiment.

II. DENSITY FUNCTIONAL THEORY

The valley and band dependent interlayer hopping
strength hλζ (Eq.4) can be extracted from splittings in
the AA-stacked bilayer single particle dispersion as dis-
cussed in Ref. [1]. We calculate the electronic band struc-
tures of the WSe2 bilayer based on density functional
theory (DFT) in the Perdew-Burke-Ernzerhof (PBE) ap-
proximation implemented in the Quantum ESPRESSO
package [13]. For the integrations we used a Monkhorst-
Pack grid of 12x12x1 points to sample the Brillouin
zone and replaced core electrons with norm-conserving
pseudo-potentials from the Pseudo Dojo library [14]. In
the latter, the s and p semi-core electrons of the W and
the semi-core d electrons of the Se have been considered
in the set of valence electrons. For the employed plane
wave basis set a cut-off energy of 90Ry (1224 eV) was cho-
sen ensuring converged ground state densities and wave
functions. Based on these parameters the atomic posi-

tions and in-plane lattice constants of an AA-stacked bi-
layer WSe2 was optimized, until the inter-atomic forces
and the stress were below thresholds of 0.01 eV/Å and
0.01GPa. Interactions with out-of-plane images were
minimized by adding a vacuum layer of at least 25Å.
Moreover, a semi-empirical van-der-Waals correction for
the PBE+D3 [15] was included, yielding excellent pre-
dictions for lattice constants of layered systems [16, 17].

Based on the optimized geometry of AA-stacked bi-
layer WSe2 we determine the interlayer hopping param-
eter hλζ from the splitting of electronic bands (with-
out spin-orbit interaction) at different high symmetry
points[1]. For the results shown in the main text, the
most important hopping parameters are hcΛ ≈ 170 meV
and hcK ≈ 0.2 meV. In contrast to the conduction band,
we also find a significant hopping for holes at the K-point
hvK ≈ 10 meV. All found values are comparable to the or-
der of magnitude found for different valleys and bands in
MoS2 bilayer [1].

III. EXPERIMENTAL METHODS

A. Sample preparation

We obtain WSe2 monolayers from a bulk WSe2 crys-
tal (HQ Graphene) through mechanical exfoliation with
blue Nitto tape (Nitto Denko, SPV 224P) [18]. WSe2
monolayers were first exfoliated onto thin PDMS films
(Gel-Pak, Gel-film X4) on glass slides, and then trans-
ferred onto silicon chips with 300 nm of thermal oxide
on top. To fabricate twisted bilayer WSe2, we trans-
ferred one section of the monolayer onto the substrate
and then stamped the remaining section of the mono-
layer on top after rotating the substrate orientation by
the chosen stacking angle. The substrate was generally
heated up to 65 ◦C by a small Peltier heating plate during
stamping. The twist angle was confirmed by measuring
the relative crystal orientation through SHG [19].

B. Optical spectroscopy

We measured the one-photon photoluminescence (PL)
of twisted bilayer WSe2 using the 488 nm line of an argon-
ion laser (Spectra-Physics, 2045E). The configuration of
the setup can be found in Ref. [19]. A power of 500 nW
was generally used for excitation and the laser line was
filtered out by a 488 nm long-pass edge filter (Semrock,
LP02-488RU). The signal was dispersed by a 150 grooves
mm-1 grating and then detected by a charge-coupled de-
vice (CCD) camera (Princeton Instruments, PIXIS 100).



5

[1] Y. Wang, Z. Wang, W. Yao, G.-B. Liu, and H. Yu,
Physical Review B 95, 115429 (2017).

[2] D. A. Ruiz-Tijerina and V. I. Fal’ko, Physical Review B
99, 125424 (2019).

[3] S. Ovesen, S. Brem, C. Linderälv, M. Kuisma, T. Korn,
P. Erhart, M. Selig, and E. Malic, Communications
Physics 2, 1 (2019).

[4] P. Merkl, F. Mooshammer, P. Steinleitner, A. Girnghu-
ber, K.-Q. Lin, P. Nagler, J. Holler, C. Schüller, J. M.
Lupton, T. Korn, et al., Nature materials 18, 691 (2019).

[5] A. Laturia, M. L. Van de Put, and W. G. Vandenberghe,
NPJ 2D Materials and Applications 2, 6 (2018).

[6] A. Ivanov and H. Haug, Physical Review B 48, 1490
(1993).

[7] F. Katsch, M. Selig, A. Carmele, and A. Knorr, Physica
Status Solidi (b) 255, 1800185 (2018).

[8] S. Brem, J. Zipfel, M. Selig, A. Raja, L. Waldecker, J. D.
Ziegler, T. Taniguchi, K. Watanabe, A. Chernikov, and
E. Malic, Nanoscale 11, 12381 (2019).

[9] Z. Jin, X. Li, J. T. Mullen, and K. W. Kim, Physical
Review B 90, 045422 (2014).

[10] M. Selig, G. Berghäuser, M. Richter, R. Bratschitsch,
A. Knorr, and E. Malic, 2D Materials 5, 035017 (2018).

[11] S. Brem, M. Selig, G. Berghaeuser, and E. Malic, Scien-
tific Reports 8, 8238 (2018).

[12] S. Brem, A. Ekman, D. Christiansen, F. Katsch, M. Selig,
C. Robert, X. Marie, B. Urbaszek, A. Knorr, and
E. Malic, arXiv preprint arXiv:1904.04711 (2019).

[13] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,
C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococ-
cioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris,
G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis,
A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari,
F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello,
L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P.
Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcov-
itch, Journal of Physics: Condensed Matter 21, 395502
(2009).

[14] M. G. M. J. van Setten, E. Bousquet, M. J. Verstraete,
D. R. Hamann, X. Gonze, and G.-M. Rignanese, Com-
puter Physics Communications 226, 39 (2018).

[15] S. Grimme, S. Ehrlich, and K. Goerigk, J. Comput.
Chem. 32, 1456 (2011).

[16] R. Gillen and J. Maultzsch, Phys. Rev. B 97, 165306
(2018).

[17] H. Tornatzy, R. Gillen, H. Uchiyama, and J. Maultzsch,
Phys. Rev. B 99, 144309 (2019).

[18] A. Castellanos-Gomez, M. Buscema, R. Molenaar,
V. Singh, L. Janssen, H. S. Van Der Zant, and G. A.
Steele, 2D Materials 1, 011002 (2014).

[19] K.-Q. Lin, S. Bange, and J. M. Lupton, Nature Physics
15, 242 (2019).


