Supplemental Information

A super stable assembled P nanowire with variant structural and magnetic/electronic properties via transition metal adsorption

Shukai Wang,^{a,#} Jinxing Gu,^{b,#} Yinan Dong,^a Linwei Sai,^c Fengyu Li,^{a,*}

^a School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, China

^b Department of Chemistry, The Institute for Functional Nanomaterials, University of Puerto Rico,

Rio Piedras Campus, San Juan, PR 00931, USA

^c College of Science, Hohai University, Changzhou 213022, China

* Corresponding Author: fengyuli@imu.edu.cn (FL); zhaojj@dlut.edu.cn (JZ) # Equal contributions

Fig. S1 Two views (a,b) and the calculated phonon spectrum (c) of the $1D-P_{20}$ NW. The unitcell was marked by black dashed lines. The P₂ dimers are in orange.

Fig. S2 Two views (a,b) and the calculated phonon spectrum (c) of the 1D- P_{24} NW. The unitcell was marked by black dashed lines. The P_2 dimers are in orange.

Fig. S3 The evolution of total energies of the $1D-P_{10}$ NW (a $10 \times 1 \times 1$ supercell, 100 P atoms in total) and the structural snapshot of the MD simulation at 300 K for at the end of 5.2 ps. The P₂ dimers are in orange.

Fig. S4 The adsorption and dissociation behaviors of the $1D-P_{10}$ NW regarding to O_2 molecules, as well as the changes in bond length.

Fig. S5 The evolution of total energies of the $1D-P_{10}$ NW (a $2 \times 1 \times 1$ supercell) with one O₂ molecule and the structural snapshot of the MD simulation at 500 K for at the end of 5 ps.

Fig. S6 The evolution of total energies of the 2D θ -P (a 2×2×1 supercell) with one O₂ molecule and the structural snapshot of the MD simulation at 300 K for at the end of 5 ps.

Fig. S7 Two views of the three optimized structures of $Mn_1@1D-P_{10}$: Mn_1-A (a), Mn_1-B (b), Mn_1-C (c). The P_2 dimers are in orange.

Fig. S8 The PBE+U band structure (a) and density of states (b) of the $1D-Mn_1@P_{10}$ with Mn adsorbed at the Mn₁-B site.

Fig. S9 Two views of the two optimized structures of $Mn_2@1D-P_{10}$: Mn_2-BB (a), Mn_2-BA (b). The P₂ dimers are in orange.

Fig. S10 The density of states of sandwich $1D-Mn_2@P_{10}$ (a), $1D-V_1@P_5$ (b), $1D-Cr_2@P_{10}$ (c), $1D-Fe_2@P_{10}$ (d), and $1D-Mo_2@P_{10}$ (e) NWs. The Fermi level is set at 0 eV.

Fig. S11 Two views of the optimized structures of $1D-Ti_2@P_{10}$ (a), $1D-Co_2@P_{10}$ (b), $1D-Zr_2@P_{10}$ (c), and $1D-Nb_2@P_{10}$ (d).

Fig. S12 The PBE+U band structures of quasi-sandwich chains $1D-Co_2@P_{10}$ (a), $1D-Nb_2@P_{10}$ (b), $1D-Ti_2@P_{10}$ (c), and $1D-Zr_2@P_{10}$ (d) NWs. The Fermi level is set at 0 eV. The zoomed insects indicate the direct-bandgap feature in the $1D-Co_2@P_{10}$ and $1D-Ti_2@P_{10}$, and indirect-bandgap character in the $1D-Nb_2@P_{10}$ and $1D-Zr_2@P_{10}$ NWs, respectively.

Fig. S13 The local density of states for orbital d_{xz} and d_{yz} of V@P₅ clearly show that the two orbitals are degenerated. For Cr₂@P₁₀ and Fe₂@P₁₀, lines representing orbital d_{xz} and d_{yz} are also overlapped, while lines for d_{xy} and d_{x2-y2} orbitals are not exactly overlapped, because these orbitals have complex interactions with P₅ rings due to their low energies.

Fig. S14 The illustration of Mo...Mo separations in the $Mo_2@P_{10}$ nanowire.

Fig. S15 The calculated phonon spectra of the sandwich chains $1D-Mn_2@P_{10}$ (a), $1D-V_1@P_5$ (b), $1D-Cr_2@P_{10}$ (c), $1D-Fe_2@P_{10}$ (d), and $1D-Mo_2@P_{10}$ (e).

Fig. S16 The final structures of 1D $TM_2@P_{10}$ chains through a 5 ps MD simulation at room temperature (T = 300 K): (a) TM = Mn, (b) TM = V, (c) TM = Cr, (d) TM = Fe, (e) TM = Mo.

Fig. S17 The top and two side views of the vdW-type 2D sheets in (a) Type-I $(TM_1@P_5)$ and (b) Type-II $(TM_2@P_{10})$ configurations, TM = Mn/V/Cr.

Fig. S18 The band structures (left) and density of states (right) of the vdW-type 2D sheets in Type-II ($TM_2@P_{10}$) configuration (a) TM = Mn, (b) TM = V, (c) TM = Cr.

Table S1. The relative energies (ΔE , in eV) between FM and AFM states of the sandwich 1D-TM₂@P₁₀ (TM = Mn, V, Cr, Fe, Mo) chains.

	Mn	V	Cr	Fe	Мо
FM	0.00	0.00	0.00	0.00	0.00
AFM	0.77	0.77	-0.30	-0.28	0.00

Table S2. The magnetic anisotropy energy (*MAE*, in meV/TM atom) and the easy axis (EA) for the sandwich $1D-Mn_2@P_{10}$ and $1D-V_1@P_5$ chains. The 1D NWs is along x axis, the 2D systems are in the xy plane.

	E(001)-E(100)	E(010)-E(100)	E(011)-E(100)	E(101)-E(100)	E(110)—E(100)	E(111)-E(100)	EA
1D-Mn ₂ @P ₁₀	0.001	0.292	0.207	0.289	0.133	0.276	(100)
	E(001)-E(100)	E(010)—E(100)	E(011)-E(100)	E(101)-E(100)	E(110)—E(100)	E(111)-E(100)	EA
$1D-V_1@P_5$	0.010	0.291	0.154	0.086	0.286	0.027	(100)
	E(001)-E(101)	E(010)—E(101)	E(100)—E(101)	E(011)-E(101)	E(110)—E(101)	E(111)-E(101)	EA
2D-Mn ₂ @P ₁₀	0.383	0.243	0.385	0.194	0.282	0.370	(101)
	E(001)-E(100)	E(010)—E(100)	E(011)-E(100)	E(101)-E(100)	E(110)—E(100)	E(111)-E(100)	EA
2D-V ₂ @P ₁₀	0.002	0.314	0.166	0.317	0.085	0.004	(100)
	E(001)-E(101)	E(010)-E(101)	E(100)—E(101)	E(011)-E(101)	E(110)—E(101)	E(111)-E(101)	EA
2D-Cr ₂ @P ₁₀	0.358	0.005	0.119	0.122	0.210	0.127	(101)

Table S3. The calculated number of electrons in each d suborbital for one Cr ion in the $Cr_2@P_{10}$ sandwich chain.

Orbitals	Up electron	Down electron
d _{xy}	0.78	0.30
$\begin{array}{c} d_{xy} \\ d_{x2\text{-}y2} \\ d_{xz} \end{array}$	0.82	0.23
d _{xz}	0.43	0.26
	0.43	0.26
d _{yz} d _{z2}	0.88	0.11