Supplementary Information

Elucidating the role of shape anisotropy in faceted magnetic nanoparticles using biogenic magnetosomes as a model

David Gandia,^a Lucía Gandarias,^b Lourdes Marcano,^{c,d} Iñaki Orue,^e David Gil-Cartón,^f Javier Alonso, *^g Alfredo García-Arribas,^{a,d} Alicia Muela,^{*a,b} and M^a Luisa Fdez-Gubieda^{*a,d}

FEM Model

To solve an electromagnetic problem on a macroscopic level we use Maxwell's equations subjected to certain boundary conditions. Usually, it is helpful to formulate the problem in terms of the electric scalar potential Φ , and the magnetic vector potential \vec{A} . In our case, there are no currents present, so the equations of interest for us are:

 $\vec{B} = \nabla \times \vec{A}$ (1)

 $\nabla \times \vec{H} = 0$ (2)

We solve the model using these expressions together with the constitutive relation:

 $\vec{B} = \mu_0 \bigl(\vec{H} + \vec{M}\bigr) \ (3)$

^{a.} BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.

^{b.} Dpto. Inmunología, Microbiología y Parasitología, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain.

^{c.} Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489 Berlin, Germany.

^{d.} Depto. de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain. ^{e.} SGIker Medidas Magnéticas, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Spain.

⁶ SGIKer Medidas Magneticas, Universidad del País Vasco (UPV/EHU), 489 ^f Structural Biology Unit, CIC bioGUNE, CIBERehd, 48160 Derio, Spain

⁹ Depto. CITIMAC, Universidad de Cantabria, 39005 Santander, Spain

The magnetization is kept constant along an arbitrary direction given by unit vector u_m , $\vec{M} = M\hat{u}_m$, where the magnetization module is set as the saturation magnetization of magnetite, M = 480 kAm⁻¹. Moreover, the 3D model is formed by the desired figure enclosed within air, to choose, in this way, suitable boundary conditions (**Figure S1**a-b). At the ends of the air domain, we imposed magnetic insulation:

$$\vec{n} \, x \, \vec{A} = 0$$
 (4)

Taking all this into account, we can calculate for a desired figure, the \vec{B} and \vec{H} field within the particle at all points (Figure S1c-d). We do this fixing the magnetization as a constant in the entire solid angle of the particle, and evaluating for all the cases the total magnetostatic density energy of the particle (Figure S1e):

$$E_{magn} = \oint -\frac{1}{2}\mu_0 \vec{H}_d \cdot \vec{M}dV \tag{5}$$

Given that magnetic poles distribution depends on where the magnetization points to, magnetostatic energy given by Equation (5) is angle-dependent and therefore encloses a form of magnetic anisotropy called shape anisotropy.

Figure S1. (a) Perfect truncated octahedron surrounded by air domain. (b) XZ slice of the Truncated octahedron . (c) \vec{H} field of several XZ slices of the truncated octahedron. (d) \vec{B} field of several XZ slices of the truncated octahedron. (e) 2D vision of the positive cubic shape anisotropy of the truncated octahedron.