Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2020

Supplementary Figures

Figure S1. Sensitivity evaluation to Dxr of MES-SA and MES-SA/MX2 cell lines. A) Confocal images (20X) of $6x10^4$ cells treated with 30 μ g/ml of free Dxr, after 4 h of exposure. B) Cytotoxicity evaluation of both cell lines ($2x10^4$) exposed 4 h to 0-100 μ M of free Dxr. Survival cells were determined by SRB assay at 72 h in triplicate along 3 independent studies. Survival percentage of each cell line was calculated as the relative percentage of their correspondent control (untreated cells), which was set at 100%. The concentration at which the half of cells are killed, Inhibitory Concentration 50 (IC₅₀), was determined by plotting survival versus the log of the concentration and fitting a non-linear regression curve using GraphPad Prism software v8.01. MES-SA/MX2 IC₅₀: 41.72 μ M; MES-SA IC₅₀: 0.478 μ M.

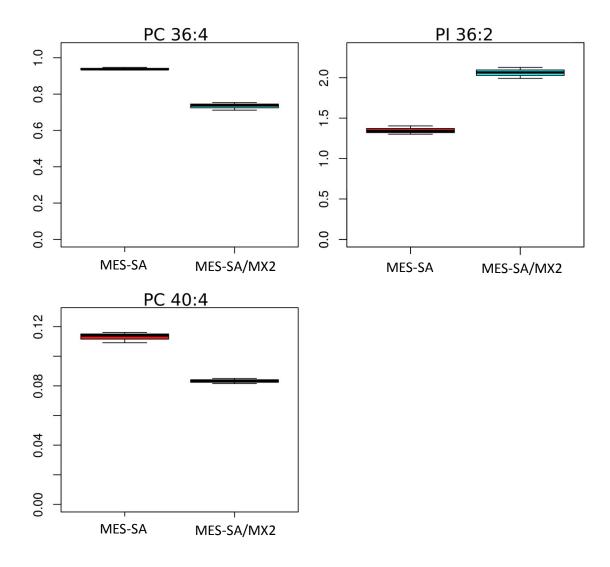


Figure S2. Detailed distribution of the unsaturation pattern in the lipid species that contributed most to cell line differences.

A)	MES-SA						
	10% FBS	5% FBS	0% FBS				
Dxr	0.47 ± 0.02	$0.27 \pm 0.01^{1.2}$	0.50 ± 0.05^2				
Dxr SCS	0.47 ± 0.01	$0.31 \pm 0.01^{1.2}$	0.85 ± 0.13				
	MES-SA/MX2						
	10% FBS	5% FBS	0% FBS				
	$41.60 \pm 0.02^{1.2.3.4.5}$	10.60 ± 0.64 ^{1.2.4.5}	5.27± 0.57 ^{2.5}				
	$30.24 \pm 4.24^{2.4}$	4.29 ± 0.83	0.46 ± 0.44				
В)	Loss of resistance factor						
	10% FBS	5% FBS	0% FBS				
MATO OA	·						
MES-SA	1.00 ± 0.003	0.85 ± 0.024	1.55 ± 0.48				
MES-SA/MX2	1.00 ± 0.003 1.38 ± 0.10	0.85 ± 0.024 2.50 ± 0.315	1.55 ± 0.48 11.35 ± 6.53				
MES-SA/MX2		2.50 ± 0.315					
MES-SA/MX2	1.38 ± 0.10	2.50 ± 0.315 Resistance ratio	11.35 ± 6.53				

Figure S3. Different serum percentages were used to evaluate the effect of SCS on Dxr efficacy on MES-SA and MES-SA/MX2 cell lines after 72 h of continuous exposure. A) Average and standard deviation of IC_{50} values were calculated after 3 independent experiments. B) Loss of resistance Factor calculation dividing Dxr IC_{50} /Dxr+SCS IC_{50} values of the same tested condition. C) Resistance ratio was calculated dividing MES-SA/MX2 IC_{50} values by MES-SA IC_{50} values of the same tested condition.1: p<0.05 vs Dxr 0% FBS; 2: p<0.05 vs Dxr SCS 0%FBS; 3: p<0.05 vs Dxr 5% FBS; 4: p<0.05 vs Dxr SCS 5% FBS; 5: p<0.05 vs Dxr SCS 10% FBS.

A)	Sample	Size ± SD (nm)	PDI ± SD	Zeta potential ± SD (mV)	EE (%)
	LP-Dxr	82.56 ± 1.8	0.03 ± 0.02	-8.19 ± 0.8	99.91 ± 1.5
	LP-SCS-Dxr	83.83 ± 1.1	0.06 ± 0.01	-8.95 ± 0.6	93.33 ± 3.2

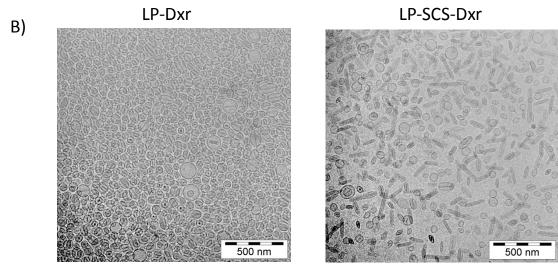


Figure S4. Physicochemical characterization of Doxil-like liposomes (LP-Dxr) and SCS liposomes (LP-SCS-Dxr). A) Liposomes were tested in terms of size, polydispersity index (PDI), surface charge or Zeta potential and encapsulation efficacy (EE). Data correspond to the average and standard deviation (SD) of 5 independent experiments measured in triplicate in water (1:100 dilutions); B) Cryo-TEM images of Dxr liposomes with or without SCS. Drug precipitate can be seen inside liposomes. LP-SCS-Dxr have more elongated rod-like structures upon loading with Dxr. The bar in the micrograph represents 500 nm. A 6,300X magnification was used.



Figure S5. Confocal images of MES-SA and MES-SA/MX2 cell lines after 4 h and 24 h of exposure to LP-Dxr or LP-SCS-Dxr at 20X. Nuclei were stained in blue and Dxr signal is depicted in red in the images. The experiment was repeated 3 times with very similar results.

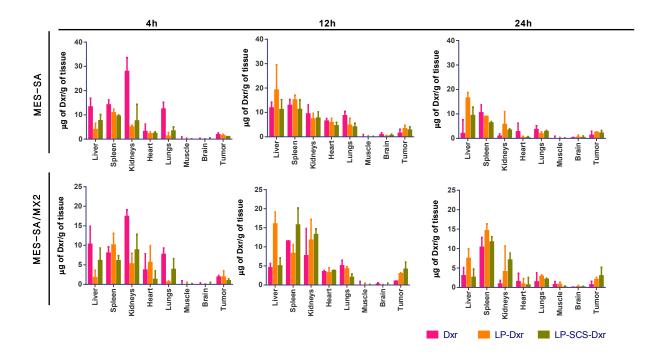


Figure S6. Dxr distribution profiles in different organs at 4, 12 and 24 h in sensitive (MES-SA) and resistant (MES-SA/MX2) tumor-bearing mice. Bars represent the average of 3 mice +/- SD.