Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2020

Supporting information

Mesoporous carbon host material for stable lithium metal anode

Jooyoung Jeong, Jinyoung Chun, Won-Gwang Lim, Won Bae Kim, Changshin Jo* and

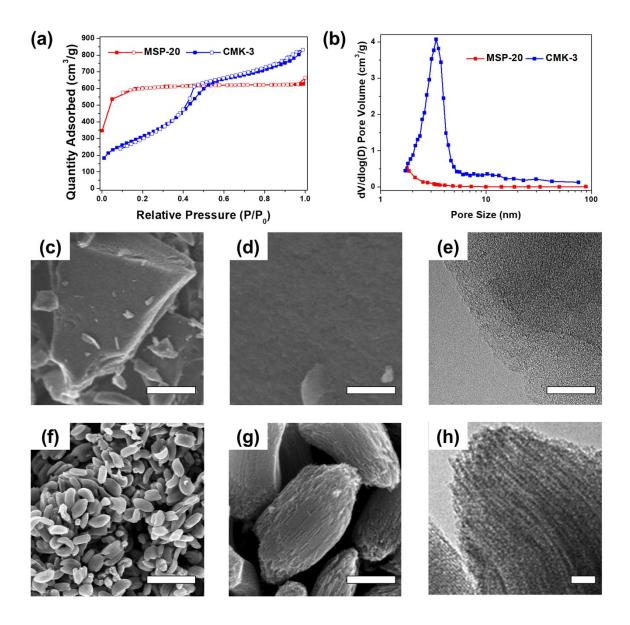
Jinwoo Lee*

Experimental section

Preparation of mesoporous carbon & material characterization

CMK-3 was synthesized using a hard template method with SBA-15 mesoporous silica as template.¹ The SBA-15 silica was synthesized as described previously.² For synthesis of CMK-3, 0.008 g of oxalic acid (anhydrous, 99%, Fluka) was dissolved in 2 mL of furfuryl alcohol (98%, Aldrich) and stirred for 5 min. The resulting solution was poured on 2 g of SBA-15 and mixed. The mixture of silica and carbon precursor was moved to a round-ball-flask (r.b.f) and dried under vacuum for 30 min. The r.b.f with mixture was moved to an oven and held at 85 °C for 8 h to polymerize the furfuryl alcohol. Then the mixture was heated in a furnace at 850 °C in Ar atmosphere; the result was a black silica-carbon composite. The composite was etched using 1.5 M HF solution to remove the silica, then washed, dried overnight at 85 °C in an oven to yield mesoporous carbon.

To characterize materials, N₂ sorption isotherm analysis (Micromeritics, Tristar II 3020), scanning electron microscope (SEM) (Hitachi, S-4800), and transmission electron microscope (TEM) (FEI, Tecnai F20) were used.


Electrochemical test

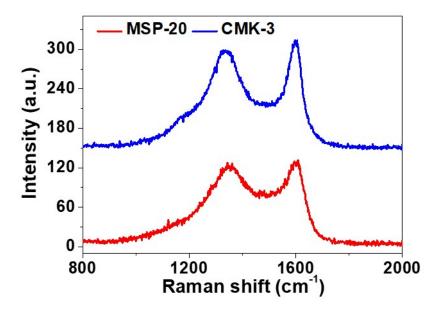
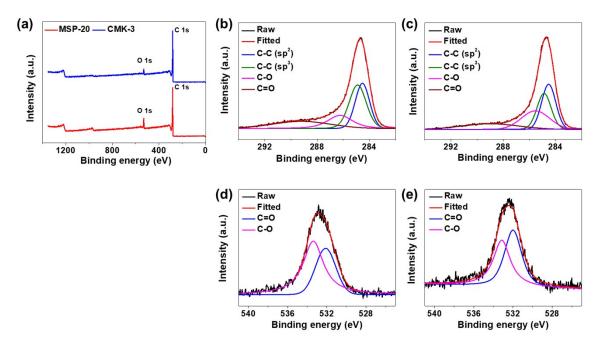
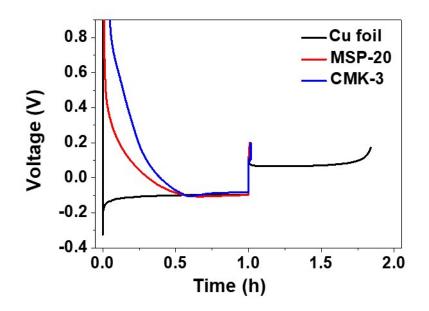
For the fabrication of anode, slurry was prepared by mixing a carbon (CMK-3 or MSP-20 (Kansai Coke and Chemicals, Japan)) with poly(vinylidene fluoride) (PVdF) binder in 9:1 weight ratio with N-methyl-2-pyrrolidone (NMP) as solvent. Each slurry was coated on Cu foil, then dried overnight at 110 °C under vacuum. Loading mass of both MSP-20 and CMK-3 was targeted to 0.66 mg cm⁻².

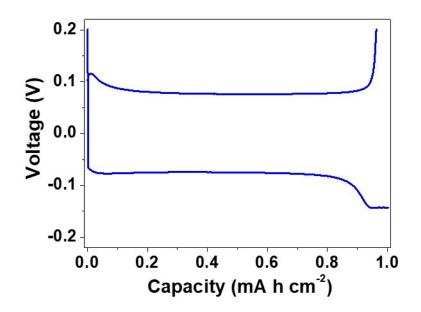
For the electrochemical half-cell test of Cu foil, MSP-20, and CMK-3, CR 2032-type coin cells were assembled in the glove box using prepared electrodes as working electrode, and Li metal foil as the counter-electrode. All electrolytes were purchased from Panax Etec.

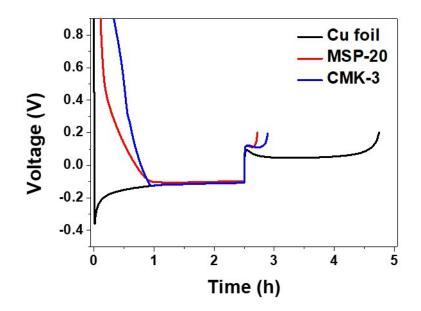
Electrolyte composition for the half-cell test was 1 M lithium hexafluorophosphate (LiPF₆) dissolved in ethyl methyl carbonate (EMC) and fluoroethylene carbonate (FEC) (volume ratio 7:3). As a separator, Celgard 2325 was used. Electrochemical test condition was current density = 1 mA cm⁻², capacity cut = $1 \sim 2.5$ mA h cm⁻², and voltage cut = $-0.2 \sim 0.2$ V. To run a Cu foil half-cell, the voltage cut of the first Li plating was changed to -0.4 V to obtain stable Li nucleation.

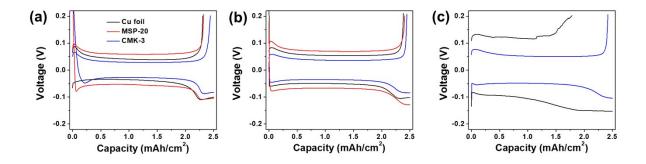
For the full-cell test, a Li-S battery system was applied. To fabricate the cathode, sulfur and reduced graphene oxide (rGO) composite were mixed in 7:3 weight ratio, followed by heat treatment at 155 °C for 1 h. After then, S-rGO was mixed with PVdF binder (9:1 weight ratio) with NMP solvent. The slurry was spread on carbon-coated Al foil. As an electrolyte, 20 μ L of 1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) dissolved in dimethoxy ethane (DME)-1,3-dioxolane (DOL) (volume ratio 1:1) with 2% LiNO₃ additive was applied. For the full-cell test, Li metal was electrochemically plated on electrodes by using a half-cell, then used as the anode in the full cell. Test condition was rate = 0.5 C (1 C = 1672 mA h g⁻¹) with voltage cut = 1.7 ~ 2.8 V. Loading mass of sulfur and rGO composite was targeted to 1 mg cm⁻². For more detail, we targeted to fix E/S ratio ~30 and N/P ratio ~4 in each full-cells.

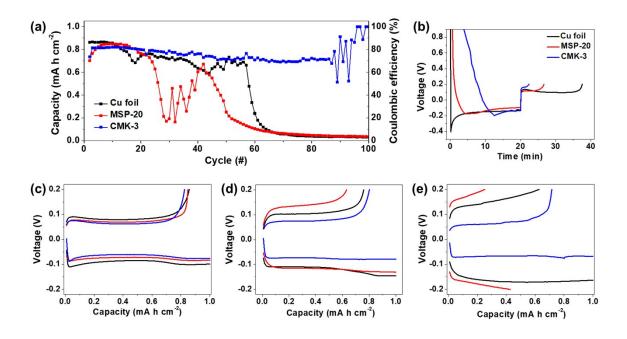
Fig. S1 N_2 physisorption isotherm result of MSP-20 and CMK-3:(a) quantity adsorbed and (b) pore size distribution. SEM images of (c), (d) MSP-20, and (f), (g) CMK-3 at (c), (h) low magnification (scale bar: 2 µm) and (e) high magnification (scale bar: 300 nm). TEM images of (e) MSP-20 and (h) CMK-3 (scale bar: 40 nm).

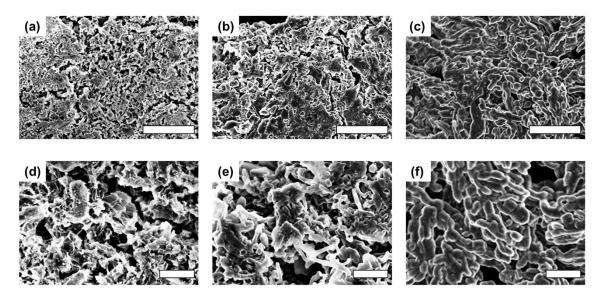




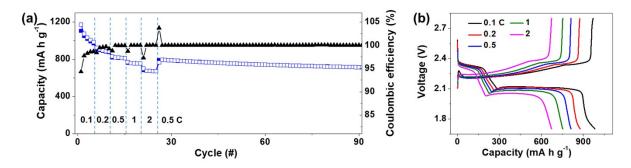

Fig. S2 Raman spectra of MSP-20 and CMK-3.


Fig. S3 XPS spectra of two carbon host materials. (a) Survey, (b),(c) C 1s spectra, and (d),(e) O 1s spectra of (b),(d) MSP-20, and (c),(e) CMK-3.


Fig. S4 First half cell cycle (voltage profile vs time) of Cu foil, MSP-20, and CMK-3 at rate = 1 mA cm^{-2} , capacity cut = 1 mA h cm^{-2} with 1 M LiPF_6 in EMC-FEC electrolyte.


Fig. S5 Voltage profile of CMK-3 at rate = 1 mA cm⁻², capacity cut = 1 mA h cm⁻² with 1 M $LiPF_6$ in EMC-FEC electrolyte at 200th cycle.


Fig. S6 First half cell cycle (voltage profile vs time) of Cu foil, MSP-20, and CMK-3 at rate = 1 mA cm⁻², capacity cut = 2.5 mA h cm⁻² with 1 M LiPF₆ in EMC-FEC electrolyte.


Fig. S7 Voltage profile of Cu foil, MSP-20, and CMK-3 at rate = 1 mA cm⁻², capacity cut = 2.5 mA h cm^{-2} with 1 M LiPF₆ in EMC-FEC electrolyte at (a) 10th, (b) 25th, and (c) 50th cycle.

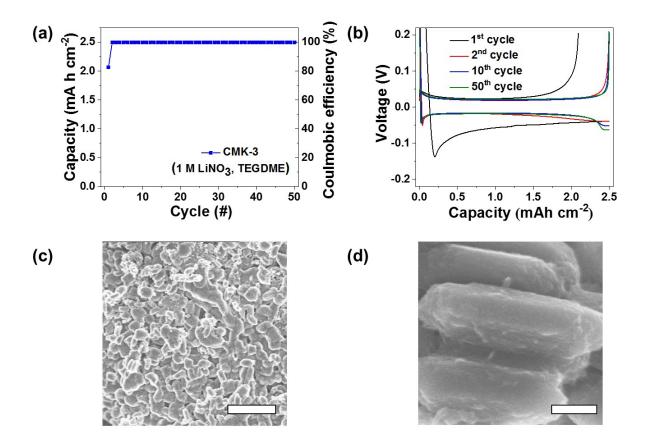

Fig. S8 Electrochemical test result of Cu foil, MSP-20, and CMK-3 at rate = 3 mA cm⁻², capacity cut = 1 mA h cm⁻² with 1 M LiPF₆ in EMC:FEC=7:3 electrolyte. (a) Cycle stability from second cycle, voltage profile of (b) initial cycle versus time, and voltage profiles versus capacity at (c)10th, (d) 25th, and (e) 50th cycle.

Fig. S9 SEM images of (a), (d) Cu foil, (b), (e) MSP-20, and (c), (f) CMK-3 at rate = 3 mA cm⁻², capacity cut = 1 mA h cm⁻² with 1 M LiPF₆ in EMC:FEC=7:3 electrolyte for 50 cycles. (a)-(c) At low magnification (scale bar: 5 μ m), and (d)-(f) at high magnification (scale bar: 1 μ m)

Fig. S10 (a) Li-S battery rate test using S-rGO cathode and Li-plated (2.5 mA h cm⁻²) CMK-3 with 1 M LiTFSI in DME-DOL + 2% LiNO₃ electrolyte and (b) voltage profile at 0.1, 0.2, 0.5, 1, and 2 C rate.

Fig. S11 (a) Cycle stability and (b) voltage profile at 1st, 2nd, 10th, and 50th cycle of CMK-3 at rate = 1 mA cm⁻², capacity cut = 2.5 mA h cm⁻² with 1 M LiNO₃ in TEGDME electrolyte.SEM images of (c) at low magnification (scale bar: 2 μ m), (d) and high magnification (scale bar: 200 nm) after 50th Li plating for 2.5 mA h cm⁻².

References

- S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna and O. Terasaki, J. Am. Chem. Soc., 2000, 122, 10712-10713.
- D. Margolese, J. Melero, S. Christiansen, B. Chmelka and G. Stucky, *Chem. Mater.*, 2000, 12, 2448-2459.