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Scheme S1 The possible reactions involved in the preparation of cobaltous

dihydroxycarbonate nanowires
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Fig. S1A representative AFM image of the Co-OCH NWs with an average size -8.7

nm.
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Fig. S2 (a) TEM image, (b) XRD, (c) full XPS spectrum, (d) high-resolution Ols

spectrum and (e) high-resolution Co2p spectrum of Co3O4 nanoparticles (the control

sample).
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Fig.S3 High-resolution Co2p spectra of Co-OCH NWs-8.7 nm (bottom) and cubic

Co0304 nanoparticles (top).
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Fig. S4 (a) Nitrogen adsorption/desorption isotherms of the as-prepared Co-OCH NW

samples and (b) their corresponding BET surface areas.
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Fig. S5 (a, c, ¢) Cyclic voltammograms and (b, d, f) the corresponding linear plots of
the current density variation vs. scan rates at 0.1 - 0.2 V of the as-prepared Co-OCH
NWs samples measured in a non-Faradaic region at different scan rates in 1.0 M KOH:

(a-b) Co-OCH NWs-8.7 nm sample, (c-d) Co-OCH NWs-12.5 nm sample, (e-f) Co-
OCH NWs-16.7 nm sample.
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Fig. S6 The specific activity (i.e., current normalized by BET surface area) of the as-

prepared Co-OCH NWs samples at a potential of 1.55 V (vs. RHE).
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Fig. S7 Current density at 1.55, 1.57 and1.60 V (vs. RHE) plotted against the ECSA of

all Co-OCH NWs samples and the estimated activities of the Co-OCH NWs-8.7 nm
sample with equal ECSA at such potentials.
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Fig. S8 Water contact angles measured at the surfaces coating with the as-prepared Co-
OCH NWs samples: (a) Co-OCH NWs-8.7 nm sample, (b) Co-OCH NWs-12.5 nm
sample, (c) Co-OCH NWs-16.7 nm sample.

Table S1 Co, O, C, and N element content (at %) in the as-prepared Co-OCH nanowires

and Co304 nanoparticles.

Sample Co O C N

Co-OCH NWs-8.7 nm 19.24% 51.03% 27.75%  1.98%
Co-OCH NWs-12.5 nm 19.88% 51.41% 27.18%  1.53%
Co-OCH NWs-16.7 nm 20.27% 52.51% 25.72%  1.50%
C0304 35.06 % 47.96% 15.72%  1.26%

* The C signal in the Co304 sample was originated from the carbon substrate; while the N signal in

all the sample was originated from the surface ligands.

Table S2 Summary of area percentages of different oxygen species obtained from the

deconvoluted spectra of the as-prepared Co-OCH NWs samples.

Samples Ov Oa OL
Co-OCH NWs-8.7 nm 78.6 % 17.2% 4.2%
Co-OCH NWs-12.5 nm 75.7% 17.6% 6.7%
Co-OCH NWs-16.7 nm 70.3% 20.8% 8.9%

Co0304 65.4% 9.9% 24.7%




Table S3 N and Ov content and Erg position in the as-prepared Co-OCH NW samples

Samples Ne Ers Ov (estimated)
Co-OCH NWs-8.7 nm 7.9 X107 ecm™  -0.74V 3.9%10" cm™
Co-OCH NWs-12.5nm  6.3X10" cm™ -0.78 V 3.2X10" cm™
Co-OCH NWs-16.7nm 3.4 X10"cm™ -0.83 V 1.7%10" cm™

*Erg : flat-band potentials, which was determined from the intercept of Mott-Schottky curve on the

V axis (i.e., X axis).

Table S4 The VBM and the 3d electron center of the as-prepared Co-OCH NWs-8.7
nm, Co-OCH NWs-12.5 nm and Co-OCH NWs-16.7nm samples.

Samples VBM (relative to Er) Decenter (relative to Er)
Co-OCH NWs-8.7 nm 0.93 eV -5.92 eV
Co-OCH NWs-12.5 nm 1.17 eV -6.26 eV
Co-OCH NWs-16.7 nm 1.41eV -6.48 eV

*VBM: the valence band maximum, which was estimated by determining the edge of XPS valence

band spectrum.
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Scheme S2 The general mechanism for electrochemical oxygen evolution reaction

occurring on the surfaces of metal-containing catalysts in an alkaline solution.

According to previous studies,* there are two different ways to form oxygen molecules
from a MO intermediate. One possible path is to generate oxygen molecules from step
(1) to (2) and then to (5): firstly, MOH* species are formed by adsorbing OH" groups
onto the surfaces of catalysts (M) with accompanying one electron generation; and the
surface-absorbed MOH* species then react with an OH™ group to form surface-adsorbed
atomic O (MO*); finally, two MO* species combine together to produce O». The other
way involves the formation of MOOH™* intermediates: the surface-adsorbed atomic O
(MO¥*) species can react with an OH™ group to generate MOOH?™ species and releases
an electron; the MOOH*species then continue to bind with an OH™ groups to generates

O: finally.
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