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Figure S1: TEM image of Gr/Pd. Transmission electron microscopy (TEM) image of palladium of a nominal 
thickness of 6 nm on top of single layer graphene.
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Figure S2: SEM image of 2D/Au. Scanning electron microscopy (SEM) images of different nominal 
thicknesses of gold supported by either graphene (Gr) or hexagonal boron nitride (hBN).
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Figure S3: TEM image of 2D/Pd. Transmission electron microscopy (TEM) images of different nominal 
thicknesses of palladium supported by either graphene (Gr) or hexagonal boron nitride (hBN).
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Figure S4: Piezoresistive response of Gr/M and hBN/Pd samples under 1 ppm strain. Plots compare signal to 
noise of a disconnected metal film on graphene to a percolated subcontiguous film on graphene and hBN.
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Strain-Induced Changes in the 2D Density of States (DOS)

While a thorough exploration of the theoretical origins of the piezoresistance seen in 

these composite materials is beyond the scope of this work, it is worth briefly discussing the 

mechanisms we believe are at play, which arise from the mismatch in quantization of energy 

levels in different regions of the metallic network. The low nominal thicknesses of the metallic 

films are well within the regime where metals show quantization of energy levels,1 and, for 

illustrative purposes, we assume individual nanoislands show behavior reminiscent of thin films. 

We believe this to be a reasonable assumption given that their lateral dimensions are generally 

significantly larger than their nominal thicknesses. We can use the prototypic 1D quantum well 

as a starting point to guide the discussion, for which the spacing between allowed energy levels 

demonstrates a 1/a2 dependence, where a is the width of the well. This model finds its real-world 

analogue in uniform thin films, where each of these quantized energy levels (confined along the 

z-direction) correspond to a subband edge, which (if the electrons population near the subband 

edge can be approximated as a Fermi gas) displays parabolic dispersion along the in-plane (x- 

and y-) directions. Correspondingly, this results in a DOS(E) which is a sum of step functions, 

where each step occurs at the energy pertaining to the next quantized energy level.2,3 It may start 

becoming clear how, in a percolated network primarily composed of thin-film-like regions of 

variable thickness, there are many scattering opportunities as the charge is transferred from one 

region to the next.

Consider two thin, semi-infinite films which are of different thicknesses and lie in the 

same plane, such that they share an edge where charge is transferred between the two films as it 

propagates along the plane (in contrast to transverse to it, as is usually considered in typical 
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heterostructures). The steps in the DOS(E) are shifted to higher energies for the thinner film than 

the thicker one. If charge is to transfer from the thicker region to the thinner one, there will be 

some energy ranges where there are more occupied states in the thicker region than are available 

in the thinner one. This will be true even if we ignore the occupancy of states in the thinner 

region, because the steps in the DOS(E) are shifted to higher energies in the thinner region as 

compared to the thicker one. So, if electron energies are conserved, this will result in 

backscattering at the interface, as there is a fundamental deficiency of available states to 

accommodate those incoming electrons. This pertains to the real systems at hand in that, under 

some applied tensile strain, it can be reasonably expected that stress is concentrated in the thinner 

regions of the percolated network, further decreasing their critical dimension and forcing the 

subband edges to higher energies, exacerbating the effect described above and further frustrating 

charge transfer from adjacent thicker regions. The reasoning here bears resemblance to the 

theory of quantized conductance, developed by Landauer et al [cite].4–6 According to this theory, 

discrete conductance channels originate from the subbands of 1D conductors, and discrete steps 

in the conductance correspond to the populating of these subbands. We suggest analogous 

channels are at play in our percolated networks, where access to these channels is regulated by 

an applied strain instead of applied bias.

 We have arrived at this description from an extremely simple thought experiment which 

only considers the variations in the DOS(E) of dissimilar thin films.Considering added 

complications such as additional conserved quantities (e.g. k-vector components), the necked 

regions between nano-islands (which will behave more like 1D conductors than thin-films), 

increased surface area/scattering centers, etc. only adds additional mechanisms by which 

scattering would be promoted as tensile stress is applied. Thus, we postulate the decrease of the 
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critical dimensions of dissimilar regions in the percolated network under an applied tensile stress 

as a likely mechanism driving the overall increase in electrical resistance of our systems.
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