A Direct Z-Scheme PtS₂/Arsenene van der Waals Heterostructure with

High Photocatalytic Water Splitting Efficiency

Kai Ren^{a,b}, Wencheng Tang^{a,*}, Minglei Sun^a, Yongqing Cai^c, Yuan Cheng^b and Gang Zhang^{b,*}

^a School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu 211189, China ^b Institute of High Performance Computing, A*STAR, Singapore 138632, Singapore

° Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau, China

* E-mail address: 101000185@seu.edu.cn (Wencheng Tang); zhangg@ihpc.a-star.edu.sg (G. Zhang)

1. Effect of SOC

The band structures of the $PtS_2/Are vdW$ heterostructure calculated by PBE functional with or without spin-orbit coupling (SOC) are shown in Fig. S1. It is clear that SOC has negligible effect on the band gap and band alignment of the $PtS_2/Are vdW$ heterostructure.

Fig. S1. The band structure of the PtS₂/Are vdW heterostructure with and without spin-orbit coupling calculated by PBE calculations.

2. The different stacking configurations

When the vertical heterostructure was constructed by PtS_2 and Are monolayers, 6 representative stacking configurations, stacking-A, stacking-B, stacking-C, stacking-D, stacking-E and stacking-F, are considered, as shown in Fig. S2. As for stacking-A configuration, the lower As atoms of the Arsenene (Are) are located on the top of Pt atoms of the PtS_2 , while the upper As atoms are on the top of the upper S atoms. For stacking-B configuration, the lower As atoms of the Are still locate on the top of Pt atoms of the PtS_2 , but the upper As atoms are on the top of lower S atoms. Putting the upper As atoms on the top of the upper S atoms and the lower As atoms on the top of the lower S atoms will obtain the stacking-C configuration. And for stacking-D configuration, we put the upper As atoms on the top of Pt atoms and the lower As atoms on the top of Pt atoms. The stacking-E configuration is constructed by locating the upper As atoms on the top of Pt atoms and the lower As atoms on the lower S atoms. As for stacking-F configuration, it is built by locating the upper and lower As atoms on the lower and upper S atoms, respectively.

Fig. S2. Top and side views of the PtS_2 /Are heterostructure for representative stacking: (a) stacking-A, (b)

stacking-B, (c) stacking-C, (d) stacking-D, (e) stacking-E and (f) stacking-F; the yellow, gray and green balls represent S, Pt and As atoms, respectively.

The binding energy, the interlayer distance and bond length of the different stacking configurations of the PtS₂/Are heterostructure are shown in Table S1. One can see that the stacking-C configuration of the PtS₂/Are heterostructure has the lowest binding energy of -14.814 meV/Å^2 , showing the formation by weaken van der Waals forces [1]. The bond length of the Pt–S and As–As in the PtS₂ and Are monolayers are optimized by 2.398 and 2.506 Å, respectively. And the bond length of the Pt–S and As–As in the optimized PtS₂/Are heterostructure are 2.400 and 2.493 Å, respectively, which only slightly change compared with the pristine monolayer PtS₂ and Are, further demonstrating the formation of vdW heterostructure.

Table S1. Calculated binding energy (E_b) and the interlayer distance (d) and bond length (B_{Pt-S} and B_{As-As}) of the different stacking configurations for the optimized PtS₂/Are heterostructure.

	stacking-A	stacking-B	stacking-C	stacking-D	stacking-E	stacking-F
$E_{\rm b}({\rm meV/\AA^2})$	-13.104	-13.861	-14.814	-8.217	-14.495	-8.487
<i>d</i> (Å)	3.044	2.908	2.770	3.718	2.442	3.644
$B_{ m Pt-S}$ (Å)	2.398	2.402	2.400	2.399	2.391	2.497
$B_{\mathrm{As-As}}(\mathrm{\AA})$	2.495	2.494	2.493	2.497	2.488	2.399

3. Effect of water molecule on stability of vdW heterostructure.

We also investigated the effect of water molecules (H_2O) on the stability of Are/PtS₂ vdW heterostructure by calculating the binding energy. We defined the H₂O adsorbed system heterostructure, PtS₂ and Are as PtS₂/Are(H₂O), PtS₂(H₂O) and Are(H₂O), respectively, as shown in Fig. S3. The binding energy between PtS₂ and Are layers can be obtained by:

$$E_{b(H2O)} = E_{Are/PtS2(H2O)} - E_{PtS2(H2O)} - E_{Are(H2O)},$$
(S1)

where $E_{PtS2/Are(H2O)}$, $E_{PtS2(H2O)}$ and $E_{Are(H2O)}$ are the total energy of the H₂O adsorbed PtS₂/Are heterostructure, H₂O adsorbed PtS₂ and H₂O adsorbed Are systems, respectively. E_b is -26.395 meV/Å², which demonstrates the stability of the Are/PtS₂ vdW heterostructure.

Fig. S3. (a) The H_2O adsorbed $PtS_2/Are vdW$ heterostructure, (b) H_2O adsorbed PtS_2 and (c) H_2O adsorbed Are system. The yellow, gray and green, red and pink balls represent S, Pt, As, O and H atoms, respectively.

4. Exciton binding energy

The exciton binding energy (E_{eb}) can quantitatively evaluate the recombination rate of the photogenerated electron-hole pairs. The E_{eb} of the monolayer Are, PtS₂ and PtS₂/Are vdW heterostructure are calculated through Mott-Wannier hydrogenic model [S2]:

$$E_{eb} = \frac{13.6\mu_{ex}}{m_0 \dot{\mathbf{o}}^2}, \ \mu_{ex} = \frac{m_e m_h}{m_e + m_h}$$
(S2)

where μ_{ex} is the effective exciton mass, and ε is the macroscopic static dielectric constant, which is the sum of electronic (ε_{el}) and ionic (ε_{ion}) contributions, respectively. The higher value of E_{eb} corresponds to the more difficult separation of the photogenerated electron-hole pairs. In Table S2, the E_{eb} of the PtS₂/Are vdW heterostructure is 0.47 eV, which is smaller than monolayer Are of 0.49 eV and PtS₂ of 1.34 eV. Therefore, the PtS₂/Are vdW heterostructure can remarkably improve the efficiency of the photocatalysis for water splitting, compared to the monolayer Are and PtS₂.

		\mathcal{E}_{el}			\mathcal{E}_{ion}			$E_{\rm eb}$
		Х	у	Z	х	У	Z	
_	Are	0.02	0.02	0.03	3.97	3.97	1.20	0.49
	PtS_2	0.02	0.02	0.01	3.97	3.97	1.18	1.34
	Are/PtS ₂	2.58	2.58	1.89	7.07	7.07	1.34	0.47

Table S2. The ε_{el} , ε_{ion} and E_{eb} of monolayer Are, PtS₂ and Are/PtS₂ vdW heterostructure.

5. The band edge positions of the Are and PtS₂ monolayers

The band edge positions of the Are and PtS₂ monolayers are shown in Fig. S4. It is clear that both Are and PtS₂ monolayers possess decent potentials of the CBM and VBM for the reduction and oxidation reaction at pH=0. The overpotentials of χ (H₂) and χ (O₂) for Are and PtS₂ monolayers are 0.848 eV and 1.375 eV, respectively, which demonstrate the HER activity of Ars and OER activity of PtS₂.

Fig. S4. The band alignment of the Are and PtS_2 monolayers with respect to the water oxidation (O₂/H₂O) and reduction (H⁺/H₂) potentials at pH=0. All results are obtained by HSE06 functional calculation.

6. Optical absorption spectrum

Because most of the data in literature is obtained from HSE06 calculations, for a fair comparison, we also calculated the optical absorption of the PtS₂/Are vdW heterostructure with HSE06 functional. As shown in Fig. S5, in ultraviolet (UV) region, the absorption peaks of PtS₂, Are monolayers and PtS₂/Are vdW heterostructure are 5.404×10^5 , 9.120×10^5 and 10.346×10^5 cm⁻¹ located at the wavelength of 311.557, 232.768 and 245.652 nm, respectively. Meanwhile, near the visible light spectrum, the HSE06 functional calculated absorption peaks of PtS₂, Are monolayers and PtS₂/Are vdW heterostructure are 4.738×10^5 , 2.495×10^5 and 4.594×10^5 cm⁻¹, respectively. The optical absorption ability of the PtS₂/Are vdW heterostructure is superior to other TMDs-based vdW heterostructures, such as TMDs/GeC (about $1.902-4.548 \times 10^5$ cm⁻¹) [S3], TMDs/BSe (about $0.451-1.715 \times 10^5$ cm⁻¹) [S4] and TMDs/Mg(OH)₂ (about $1.511-1.934 \times 10^5$ cm⁻¹) [S5] heterostructures.

Fig. S5. The optical absorption spectrum of the monolayer PtS_2 , Are and $PtS_2/Are vdW$ heterostructure calculated by HSE06 functional.

References

- [S1] X. Chen, F. Tian, C. Persson, W. Duan, N.X. Chen, Interlayer interactions in graphites, *Sci. Rep.*, 3 (2013) 3046.
- [S2] B. Ram, A.K. Singh, Strain-induced indirect-to-direct band-gap transition in bulk SnS₂, *Phys. Rev. B*, 95 (2017), 075134.
- [S3] K. Ren, M. Sun, Y. Luo, S. Wang, Y. Xu, J. Yu, W. Tang, Electronic and optical properties of van der Waals vertical heterostructures based on two-dimensional transition metal dichalcogenides: First-principles calculations, *Phys. Lett. A*, 383 (2019) 1487–1492.
- [S4] Y. Luo, K. Ren, S. Wang, J.-P. Chou, J. Yu, Z. Sun, M. Sun, First-Principles Study on Transition-Metal Dichalcogenide/BSe van der Waals Heterostructures: A Promising Water-Splitting Photocatalyst, J. Phys. Chem. C, 123 (2019) 22742–22751.
- [S5] Y. Luo, S. Wang, K. Ren, J.P. Chou, J. Yu, Z. Sun, M. Sun, Transition-metal dichalcogenides/Mg(OH)₂ van der Waals heterostructures as promising water-splitting photocatalysts: a first-principles study, Phys Chem Chem Phys, 21 (2019) 1791–1796.