Functionalized MXenes as Effective Polyselenides Immobilizer for Lithium-Selenium Batteries: A Density Functional Theory (DFT) Study

Rahul Jayan, Md Mahbubul Islam*

Department of Mechanical Engineering, Wayne State University, Detroit, MI 48202, USA *Corresponding author: <u>mahbub.islam@wayne.edu</u>

Table S1. Structural data of the bare and functionalized Mxenes

AM	Lattice Parameters (A ^o)		Bond length (A ^o)	
	a = b	Ti - C	Ti - Ti	Ti – S/O/F/Cl
Ti ₃ C ₂	12.370	2.05	2.92	-
$Ti_3C_2S_2$	12.493	2.16	3.03	2.40
$Ti_3C_2O_2$	12.108	2.18	3.10	1.97
$Ti_3C_2F_2$	12.215	2.06	2.94	2.16
$Ti_3C_2Cl_2$	12.108	2.05	2.93	2.47

Table S2. The binding energies (in eV) of higher order polyselenides with the electrolyte solvents

Higher order Li ₂ Se _n polyselenides	DME	DOL
Li ₂ Se ₄	0.87	0.82
Li ₂ Se ₆	0.92	0.79
Li ₂ Se ₈	0.90	0.83

Fig S1. Partial density of states (PDOS) of Ti₃C₂. The fermi level is indicated with a vertical line

Figure S2. Top and side views of the structures of Li₂Se_n adsorbed monolayer graphene

Figure S3. The side and top views of the most stable structures of Li_2Se_n adsorbed on Ti_3C_2

Figure S4. The side and top views of the optimized structures of $Ti_3C_2X_2$ (X = S, O, F, Cl)

Figure S5. The top views of the most stable structures of Li_2Se_n adsorbed on $Ti_3C_2S_2$ and $Ti_3C_2O_2$.

Figure S6. The side and top views of the optimized structures of Li₂Se_n adsorbed Ti₃C₂F₂

Figure S7. The side and top views of the most favorable configurations of Li_2Se_n adsorbed $Ti_3C_2Cl_2$

Figure S8. The most stable geometric configurations of ($Li_2Se_n \ge 4$) bound DOL/ DME solvents

Figure S9. Charge density difference of Li_2Se_n (n = 1,4,8) on graphene. The iso-surface level is set at 0.0020 e Å⁻³. The green and red colors denote charge accumulation and depletion, respectively.

Figure S10. Charge density difference of Li_2Se_n (n = 1,4,8) on $Ti_3C_2F_2$ and $Ti_3C_2Cl_2$. The iso-surface level is set at 0.0020 e Å⁻³. The green and red colors denote charge accumulation and depletion, respectively.

Figure S11. Total DOS of Li_2Se_n (n = 1,4,8) adsorbed $Ti_3C_2S_2$.

Figure S12. Total DOS of Li_2Se_n (n = 1,4,8) adsorbed $Ti_3C_2O_2$

Figure S13. Total DOS of Li_2Se_n (n = 1,4,8) adsorbed $Ti_3C_2F_2$

Figure S14. Total DOS of Li_2Se_n (n = 1,4,8) adsorbed $Ti_3C_2Cl_2$

 $Figure \ S15. \ Total \ DOS \ of \ Ti_3C_2-S/O \ and \ Ti_3C_2-S/O-Li_2Se \ calculated \ using \ PBE-GGA \ and \ GGA+U \ method$