Supporting Information

Bifacial Passivation towards Efficient FAPbBr₃-based Inverted Perovskite Light-emitting Diodes

Miaozi Li, Juanhong Wang, Chaohuang Mai, Yangke Cun, Binbin Zhang, Guohui Huang, Danmu Yu, Jiali Li, Lan Mu, Lijuan Cao, Danyang Li, Junjie Wang, Jian Wang*, and Junbiao Peng

Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China.

E-mail: jianwang@scut.edu.cn

Figure S1. Contact angles of a) ZnO film and b) ZPM film.

Figure S2. Grain size distribution of FAPbBr₃ films deposited on a) ZPM, and b) PEABr-modified FAPbBr₃ film on ZPM.

Device	A_1 (%)	τ_1 (ns)	A_2 (%)	τ_2 (ns)	$A_{3}(\%)$	τ_3 (ns)	$ au_{avg}$ (ns)
ZnO/FAPbBr ₃	15	3.13	49	15.58	36	53.92	27.51
ZPM/FAPbBr ₃	10	5.12	48	23.89	42	80.91	45.87
ZPM/FAPbBr ₃ /PEA ₂ PbBr	7	6.30	40	39.55	53	135.4	88.08
4							

Table S1. Tri-exponential fitting parameters of the photoluminescence decay profilesshown in Figure 5c.

Figure S3. Normalized PL intensity different kinds of perovskite films.

Figure S4. Device performance of ZPM/FAPbBr₃ devices with different concentrations of PVP in the PVP solution. a) *J-V-L* characteristics, b) CE–*J* characteristics.

Figure S5. Device performance of ZPM/FAPbBr₃/PEA₂PbBr₄ devices with different concentrations of PEABr in the PEABr solution (the PVP concentration in the PVP solution is fixed at 12.5 mg/mL). a) *J-V-L* characteristics, b) CE–*J* characteristics.

Device Structure		L _{max}	EQE _{max}	PE _{max}	Ref.
	[V]	$[cd/m^2]$	[%]	[lm/W]	
ITO/AZO:Cs/Cs ₁₀ (MA _{0.17} FA _{0.83})PbBr _{2.97} I _{0.003}	2.5	553370	12.98	89.7	1
/CuSGaSnO/ WO ₃ /Au					
ITO/ZnO/PVP/Cs _{0.87} MA _{0.13} PbBr ₃ /CBP/		91000	10.4	/	2
MoO _x /Al					
ITO/LZO/MIZO/CsPbBr ₃	2.7	22825	5.7	9.7	3
QDs/TCTA/NPD/HAT-CN/A1					
ITO/a-ZSO/CsPbBr ₃ /NPD/MoO _x /Al	/	496320	9.3	33.0	4
ITO/ZnO/PEI/MAPbBr ₃ /TFB/MoO _x /Al	2.2	20000	0.8	4	5
ITO/ZnO/PMMA/MAPbBr ₃ /PVK/NPD/Al	5.0	3450	2.8	4.4	6
ITO/ZnO/FAPbBr ₃ /Poly-TPD/MoO _x /Al	1.9	13062	1.2	3.1	7
ITO/ZnO/PEIE/FAPbBr ₃ /TFB/MoO _x /Al		7348	3.5	19.1	8
ITO/ZnO/FAPbBr3 QDs/PVK/Poly-TPD/Pt	4.1	12998	6.0	/	9
ITO/ZPM/FAPbBr ₃ /PEA ₂ PbBr ₄ /PVK/MoO _x		60290	9.0	46.4	This
/Al					work

 Table S2. Device performance of the inverted green PeLEDs.

Figure S6. The operational lifetime at initial brightness of ~ 100 cd/m².

Supplementary References

- A. R. B. M. Yusoff, A. E. X. Gavim, A. G. Macedo, W. J. Da Silva, F. K. Schneider, M. A. M. Teridi, *Materials Today Chemistry*, 2018, 10, 104-111.
- L. Zhang, X. Yang, Q. Jiang, P. Wang, Z. Yin, X. Zhang, H. Tan, Y. M. Yang, M. Wei, B. R. Sutherland, E. H. Sargent, J. You, *Nat. Commun.*, 2017, 8, 15640.
- 3. E. Moyen, H. Jun, H. Kim, J. Jang, ACS Appl. Mater. Inter., 2018, 10, 42647-42656.
- 4. K. Sim, T. Jun, J. Bang, H. Kamioka, J. Kim, H. Hiramatsu, H. Hosono, *Appl. Phys. Rev.*, 2019, **6**.
- J. Wang, N. Wang, Y. Jin, J. Si, Z. Tan, H. Du, L. Cheng, X. Dai, S. Bai, H. He, Z. Ye, M. L. Lai, R. H. Friend, W. Huang, *Adv. Mater.* 2015, 27, 2311-2316.
- G. S. Kumar, B. Pradhan, T. Kamilya, S. Acharya, B. Chem. Soc. Jpn., 2018, 91, 1241-1248.
- L. Meng, E. Yao, Z. Hong, H. Chen, P. Sun, Z. Yang, G. Li, Y. Yang, *Adv. Mater.*, 2017, 29.
- Y. Zhu, X. Zhao, B. Zhang, B. Yao, Z. Li, Y. Qu, Z. Xie, Org. Electron., 2018, 55, 35-41.
- F. Di Stasio, I. Ramiro, Y. Bi, S. Christodoulou, A. Stavrinadis, G. Konstantatos, *Chem. Mater.*, 2018, **30**, 6231-6235.