Electronic Supplementary Information (ESI)

MnV₂O₆/Graphene Nanocomposite as Efficient Electrocatalysts for the Oxygen Evolution Reaction

Kyeong-Ho Kim¹, Yun-Hyuk Choi^{2,*}, and Seong-Hyeon Hong^{1,*}

¹Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul 151-744, Republic of Korea

²School of Advanced Materials and Chemical Engineering, Daegu Catholic University, Gyeongsan, Gyeongbuk 38430, Republic of Korea

* Corresponding author Prof. Seong-Hyeon Hong (S.-H. Hong) E-mail: shhong@snu.ac.kr Prof. Yun-Hyuk Choi (Y.-H. Choi) E-mail: yunhyukchoi@cu.ac.kr

Fig. S1 XPS spectra of as-prepared MnV_2O_6 nanobelts for (a) survey, (b) Mn 2p, (c) V 2p, and (d) O 1s.

Fig. S2 High magnification SEM image of MnV_2O_6 /graphene nanocomposite.

Fig. S3 Linear scan voltammogram (LSV) curves of (a) MVO/G-30 and (b) bare graphene, measured in 1 M KOH aqueous solution.

OER catalyst	OER performance				
	[KOH] (M)	I (mA cm ⁻²)	η (mV)	Tafel slop (mV dec ⁻¹)	Ref.
IrO ₂	1	10	330	76	[1]
V-Co/CoO@C	1	10	320	143	[2]
Co-Fe-O/rGO	1	10	340	31	[3]
Co ₃ O ₄ /BCN	1	10	394	-	[4]
MnV ₂ O ₆ /G	1	10	396	66	This worl
CuCo ₂ O ₄ /NrGO	0.1	10	410	-	[5]
Mn ₃ O ₄ /CNT	1	10	410	-	[6]
Mn _{1.5} V _{1.5} O ₄ /NrGO	0.1	10	420	271	[7]
Mn ₂ V ₂ O ₇ /NrGO	0.1	10	440	286	[7]
Pt-Mn ₃ O ₄ /C	0.1	1.4	470	-	[8]
Pt-Mn ₃ O ₄ /CB@graphite	0.1	5	470	63	[9]
Mn ₃ O ₄ @G	1	10	473	85	[10]
CoFe ₂ O ₄ /rGO	0.1	10	540	-	[11]
Mn ₃ O ₄ @glassy carbon	0.1	8.36	570	71.5	[12]
MnO ₂ /C	0.1	10	570	-	[13]
MnO2@Pd@C	1	2.6	700	-	[14]

Table S1 OER performance comparison of MnV_2O_6 /graphene nanocomposite with the previously reported transition metal oxide/carbon nanocomposites for OER electrocatalysts.

- [1] Zhang, J. et al. Angew. Chem., 2016, 128, 6814-6819.
- [2] Huang, H. et al. Inorg. Chem., Commun., 2019, 103, 1-5.
- [3] Geng, J. et al. Chem. Sus. Chem., 2015, 4, 659-664.
- [4] Balakrishnan, T. et al. RSC Adv., 2016, 6, 79448–79451.
- [5] Bikkarolla, S. K. et al. J. Power Sources, 2015, 281, 243-251.
- [6] Li, L. et al. ACS Appl. Energy Mater., 2018, 1, 963–969.
- [7] Xing, X. et al. ACS Appl. Mater. Interfaces, 2018, 10, 44511-44517.

- [8] Li, Z.-Y. et al. *Electrochim. Acta*, 2014, 146, 119–124.
- [9] Li, Z.-Y. et al. J. Mater. Chem. A, 2014, 2, 18236–18240.
- [10] Li, M. et al. Int. J. Hydrogen Energy, 2018, 43, 15807-15814.
- [11] Godinho, M. I. et al. Electrochim. Acta, 2003, 47, 4307-4314.
- [12] Guo, C. X. et al. Nanoscale, 2014, 6, 10896–10901.
- [13] Kim, H.-M. et al. ChemistrySelect, 2018, 3, 6302–6308.
- [14] Zhang, J.-H. et al. *Electrochim. Acta*, 2016, **196**, 661–669.

Fig. S4 Cyclic voltammograms acquired at scan rates of 20-100 mV s⁻¹ in the range of 1.156-1.246 V *versus* RHE for (a) MVO, (b) MVO/G-10, and (c) MVO/G-20. (d-f) The differences (Δ J) of anodic and cathodic current densities at 1.20 V *versus* RHE (in the non-Faradaic region) plotted as a function of the scan rate. Each plot is fitted to a straight line to determine the C_{dl} values.

Fig S5. (a) Nyquist plots measured at 1.5464, 1.5964, and 1.6464 V vs. RHE, (b) cyclic voltammograms, and (c) differences (ΔJ) of anodic and cathodic current densities plotted as a function of the scan rate for MVO/G-20 after 1000 CV cycles. The plot is fitted to a straight line to determine the C_{dl} value.

Fig. S6 (a) XRD patterns for Bare CFP, MVO/G-20, and MVO/G-20 after 1000 CV cycling test and SEM images of MVO/G-20 (b) before cycle and (c) after 1000 CV cycling test, respectively.

"As shown in the XRD patterns (Fig. S6a[†]), MVO became amorphous after 1000 CV cycles and this amorphization was also observed in other transition metal oxide electrocatalysts.^[1-3] The morphological observation by SEM indicated that there was no significant change in the morphology of MVO/G-20 after 1000 CV cycling test (Fig. S6b-c[†])."

Ref.

[1] J. Phys. Chem. Lett., 2012, 3, 3264-3270.

[2] Inorg. Chem., 2017, 56, 1041-1044.

[3] ACS Sustainable Chem. Eng., 2018, 6, 16255-16266.

Fig. S7. (a) SEM image of MVO/G-20 after 1000 CV OER electrolysis and EDS mapping images of (b) Mn K, (c) V K, (d) O K, and (e) C K, respectively, and obtained EDS spectra for different areas (f-i).

"The SEM-EDS results show that although the distribution of Mn and V was similar (Fig. S7ae†), the fraction of V was relatively low (Fig. S7f-i†) indicating that V dissolution occurred after 1000 CV cycles, which is similar to the dissolution of V⁴⁺ and V⁵⁺ components under KOH or NaOH solution in other V-containing compounds.^[4-6]"

[4] Angew. Chem. Int. Ed., 2017, 56, 3289-3293.

[5] J. Mater. Chem. A, 2019, 7, 21911-21917.

[6] Nanoscale, 2020, 12, 3803-3811.

Fig. S8. XPS spectra of MVO/G-20 after 1000 CV OER electrolysis for (a) Mn 2p and (b) V 2p.

"The XPS spectra showed that the surface chemical states of MVO/G-20 underwent obvious changes (Fig. S8[†]). The Mn 2p_{3/2} spectrum was deconvoluted into two peaks located at 641.8 and 642.6 eV corresponding to Mn³⁺ and Mn⁴⁺ states, respectively,^[7-8] indicating that pristine Mn²⁺ ion was oxidized after 1000 CV cycles (Fig. S8a[†]). On the other hand, V 2p_{3/2} spectrum was deconvoluted into two peaks located at 514.6 and 516.1 eV corresponding to V³⁺ and V⁴⁺ states, respectively,^[9] indicating that pristine V⁵⁺ ion was mainly dissolved and reduced after 1000 CV cycles (Fig. S8b[†]). The dissolution of vanadium-ion species can affect catalytic activity^[5,6] as it could lead to exposure of more OER active sites, valence change of other active species, and generation of oxygen vacancies, and further detailed mechanism study is required."

[7] Am. Mineral., 1998, 83, 305-315.

[8] Appl. Surf. Sci., 2011, 257, 2717-2730.

[9] ChemSusChem, 2019, 12, 240-251.