

Fig. S1 The optimized structures of electrolyte solvent molecule DOL with (a) Li_2S_4 , (b) Li_2S_6 , (c) Li_2S_8 , and DME with (d) Li_2S_4 , (e) Li_2S_6 , (f) Li_2S_8 .

					-			
	1	DO	DME					
Clusters	$E_{\rm b}({\rm eV})$	$E_{\rm b}({\rm eV})$	$E_{\rm b}({\rm eV})$	$E_{\rm b}({\rm eV})$	 This	$E_{\rm b}({\rm eV})$	$E_{\rm b}({\rm eV})$	$E_{\rm b}({\rm eV})$
	This work	Ref. [1]	Ref. [2]	Ref.[3]		Ref. [1]	Ref. [2]	Ref.[3]
Li_2S_4	0.87	0.87	0.87	0.80	0.92	0.92	0.94	0.80
Li_2S_6	0.90	0.90	0.92	0.83	0.95	0.95	0.97	0.85
Li_2S_8	0.92	0.92	0.93	0.77	0.97	0.98	0.99	0.78

Table S2 The calculated parameters of ε -P with adsorbed Li₂S, LiS+Li or 2Li+S. The nearest distances between Li/S and P atoms (D_{AM-Li} and D_{AM-S}), the distance between Li and S atoms in adsorbed species (d_{Li-S1} and d_{Li-S2}), the longest distance between two adjacent P atoms in ε -P (d_{P-P}), the serious distance change of P-P bond in ε -P with adsorbed species (Δ d_{P-P}), the P-S bond population (P_{P-S}), Mulliken atomic population of Li atoms (e_{Li1}, e_{Li2}), total Mulliken charge magnitude of S atoms (e_S) and total Mulliken charge difference of ε -P. Here, Mulliken charge difference means the difference of charge value between adsorbed case and free-standing case (Δ e_{AM})(e). (In free Li₂S, d_{Li-S} = 2.094 Å; in free ε -P, d_{P-P}=2.230 Å)

ε-P	D _{AM-Li}	D _{AM-S}	$d_{\text{Li-S1}}$	$d_{\text{Li-S2}}$	d_{P-P}	$\Delta d_{\text{P-P}}$	п	- (-)	- (-)	- (-)	A = (-)
	(Å)	(Å)	(Å)	(Å)	(Å)	(Å)	P _{P-S}	e _{Lil} (e)	$e_{Li2}(e)$	$e_{s}(e)$	$\Delta e_{AM}(e)$
Li_2S	2.542	2.112	2.507	2.470	3.156	0.926	0.41	0.96	0.95	-0.83	1.08
LiS+Li	2.532	2.018	2.412	-	2.314	0.084	0.59	0.97	0.95	-0.62	1.30
2Li+S	2.543	2.112	-	-	2.262	0.032	0.33	0.98	0.97	-0.25	1.70

Supplementary information:

Fig. S2 Energy profiles of lithium sulfides diffusions along the directions with the lowest barriers. (a) α -P, (b) β -P, (c) γ -P, (d) δ -P.

Table S3 Diffusion energy barriers (eV) of lithium sulfides along different crystal orientations on β -P and γ -P.

Barrier (eV)	β-P[100]	β-P[010]	β-P[110]	γ-P[100]	γ-P[010]
S ₈	0.069	0.132	0.137	2.957	3.19
Li_2S_8	0.127	0.161	0.178	17.456	16.446
Li_2S_6	0.104	0.134	0.197	14.198	13.226
Li_2S_4	0.285	0.385	0.498	14.303	12.075
Li_2S_3	0.268	0.269	0.374	10.417	21.36
Li_2S_2	0.358	0.394	0.426	15.369	20.459
Li ₂ S	0.544	0.667	0.762	28.246	30.953

Fig. S3 Non-equivalent [100], [010] and [110] diffusion directions for Li₂S₆ on β-P. The energy profiles

with different barriers along [100], [010] and [110] directions for Li_2S_6 diffusion on β -P.

Fig. S4 (a) Electron density difference between Li₂S₈, Li₂S₃, Li₂S and LiS+Li species and ε -P AM; (b) Electron density difference between Li₂S₄ and various AMs, α -P, ε -P, ζ -P and θ -P. The charge transfer is defined as the charge difference between before and after Li₂S_n cluster is absorbed on AM, and can be expressed as $\Delta \rho = \rho(AM + Li_2S_n) - \rho(AM) - \rho(Li_2S_n)$, where $\rho(AM + Li_2S_n)$, $\rho(AM)$, and $\rho(Li_2S_n)$ are the charge densities for bound system, pristine AM and Li₂S_n cluster, respectively. Here, blue

(yellow) is the spatial regions gain (loss) in charge. The isosurface level is set as 0.01 e Å⁻³.

Fig. S5 (a) Atomic partial density of states (PDOS) for pristine β -P and β -P with adsorbed Li₂S₈ or Li₂S; (b) Band structure of pristine β -P; (c) Band structure of β -P with adsorbed Li₂S₈; (d) Band structure of

 β -P with adsorbed Li₂S.

Fig. S6 Schematic diagrams of the conversions by embedding an array of dislocations, with the corresponding structural units highlighted by shaded regions and arrows. (a) from α -P to β -P, (b) from β -P to γ -P, (c) from γ -P to δ -P.

References:

[1] L.-C. Yin, J. Liang, G.-M. Zhou, F. Li, R. Saito and H.-M. Cheng, 2016, *Nano Energy*, 25: 203-210.
[2] T. Li, C. He and W. Zhang, 2020, *Energy Storage Materials*, 25: 866-875.

[3] Y. Qie, J. Liu, S. Wang, S. Gong and Q. Sun, 2018, Carbon, 129: 38-44.