Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2020

## Synthesis of compounds

Di-tert-butyl 1-methylhydrazine-1,2-dicarboxylate1



To a stirring solution of *N*-methylhydrazine **4** (157 mg, 3.42 mmol) in *i*-PrOH (4.3 mL) was added dropwise di-*tert*-butyl dicarbonate (1.6 g, 7.5 mmol, pre-dissolved in CH<sub>2</sub>Cl<sub>2</sub> (3.4 mL)) over 20 min. The mixture was then stirred for 16 hr at 21°C. After this time, solvent was removed *in vacuo* and purification by flash column chromatography (20% Et<sub>2</sub>O/petrol) yielded di-*tert*-butyl 1-methylhydrazine-1,2-dicarboxylate (407 mg, 2.05 mmol, 60%) as a white solid: m.p. 58–62°C (*lit m.p.* 54–56°C). <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>, rotamers)  $\delta$  6.55-6.10 (br s, 1H), 3.11 (s, 3H), 1.47 (s, 18H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>, rotamers)  $\delta$  171.2 (C), 155.9 (C), 81.3 (C), 60.4 (CH<sub>3</sub>), 28.3 (CH<sub>3</sub>); IR (solid) 3316, 2978, 2932, 1701 cm<sup>-1</sup>. Spectra data agrees with that described in Bahou *et al.* <sup>1</sup>

Di-tert-butyl 1-(3-(tert-butoxy)-3-oxopropyl)-2-methylhydrazine-1,2-dicarboxylate<sup>1</sup> 5



To a solution of di-*tert*-butyl 1-methylhydrazine-1,2-dicarboxylate (3.00 g, 12.2 mmol) in *t*-BuOH (5 mL), was added 10% NaOH (0.5 mL) and the reaction mixture stirred at 21°C for 10 min. After this, *tert*-butyl acrylate (5.31 mL, 36.6 mmol) was added to the solution and the reaction mixture was heated at 60°C for 24 hr. Following this, the solvent was removed *in vacuo* and the crude residue was dissolved in EtOAc (150 mL) and washed with water (3 × 50 mL). The organic layer was then dried (MgSO<sub>4</sub>) and concentrated *in vacuo*. Purification of the residue by flash column chromatography (0% to 20% EtOAc/petrol) afforded di-*tert*-butyl-1-(3-(*tert*-butoxy)-3-oxopropyl)-2-methylhydrazine-1,2-dicarboxylate **5** (2.24 g, 5.98 mmol, 49%) as a clear oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>, rotamers)  $\delta$  3.85–3.52 (m, 2H), 3.06–2.99 (m, 3H), 2.51 (t, *J* = 7.2 Hz, 2H), 1.48–1.43 (m, 27H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>, rotamers)  $\delta$  171.0 (C), 155.4 (C), 154.4 (C), 81.0 (C), 44.6 (CH<sub>3</sub>), 36.6 (CH<sub>2</sub>), 34.1 (CH<sub>2</sub>), 28.3 (CH<sub>3</sub>). IR (thin film) 2976, 2933, 1709 cm<sup>-1</sup>. LRMS (ESI) 375 (100, [M+H]<sup>+</sup>), 319 (30, [M-C<sub>4</sub>H<sub>9</sub>+2H]<sup>+</sup>). HRMS (ESI) calcd for C<sub>18</sub>H<sub>35</sub>N<sub>2</sub>O<sub>6</sub> [M+H]<sup>+</sup> 376.2524; observed 376.2516. Spectra data agrees with that described in Bahou *et al.* <sup>1</sup>

3-(4,5-Dibromo-2-methyl-3,6-dioxo-3,6-dihydropyridazin-1(2H)-yl) propanoic acid<sup>1</sup> 6



Dibromomaleic acid (4.93 g, 17.9 mmol) was dissolved in AcOH (25 mL) and heated under reflux for 30 min. To this solution, was added di-*tert*-butyl-1-(3-(*tert*-butoxy)-3-oxopropyl)-2-methylhydrazine-1,2-dicarboxylate **5** (5.60 g, 14.9 mmol) and the reaction heated under reflux for a further 4 hr. After this time, the reaction mixture was then concentrated *in vacuo* with toluene co-evaporation (3 × 30 mL, as an azeotrope) and the crude residue purified by flash column chromatography (50% to 100% EtOAc/petrol (1% AcOH)) to afford 3-(4,5-dibromo-2-methyl-3,6-dioxo-3,6-dihydropyridazin-1(2*H*)-yl) propanoic acid **6** (3.41 g, 9.57 mmol, 64%) as a yellow solid. m.p. 140–144°C <sup>1</sup>H NMR (600 MHz, DMSO-d<sub>6</sub>)  $\delta$  4.28 (t, *J* = 7.3 Hz, 2H), 3.56 (s, 3H), 2.63 (t, *J* = 7.3 Hz, 2H). <sup>13</sup>C NMR (150 MHz, DMSO-d<sub>6</sub>)  $\delta$  171.9 (C), 152.7 (C), 152.4 (C), 135.3 (C), 135.0 (C), 43.1 (CH<sub>3</sub>), 34.7 (CH<sub>2</sub>), 31.7 (CH<sub>2</sub>). IR (solid) 3044, 1725, 1606, 1570 cm<sup>-1</sup> LRMS (ESI). 359 (50, [M<sup>81</sup>Br<sup>81</sup>Br+H]<sup>+</sup>) 357 (100, [M<sup>79</sup>Br<sup>81</sup>Br+H]<sup>+</sup>), 355 (50, [M<sup>79</sup>Br<sup>79</sup>Br+H]<sup>+</sup>). HRMS (ESI) calcd for C<sub>8</sub>H<sub>9</sub>Br<sub>2</sub>N<sub>2</sub>O<sub>4</sub> [M<sup>79</sup>Br<sup>81</sup>Br+H]<sup>+</sup> 358.8883; observed 358.8882. Spectra data agrees with that described in Bahou *et al.* <sup>1</sup>

2,5-Dioxopyrrolidin-1-yl 3-(4,5-dibromo-2-methyl-3,6-dioxo-3,6-dihydropyridazin-1(2*H*)-yl) propanoate<sup>1</sup> **7** 



A solution of 3-(4,5-dibromo-2-methyl-3,6-dioxo-3,6-dihydropyridazin-1(2*H*)-yl) propanoic acid **6** (750 mg, 2.13 mmol) in THF (10 mL) was cooled to 0°C and was added N,N'-dicyclohexylcarbodiimide (480 mg, 2.34 mmol). The homogenous solution was then stirred at 0°C for 30 min. After this time, was added *N*-hydroxysuccinimide (89 mg, 0.78 mmol) and the reaction stirred at 21°C for a further 16 hr. The newly formed heterogeneous mixture was then filtered and the filtrate concentrated in *vacuo*. Purification of the crude residue by flash column chromatography (20% to neat EtOAc/petrol) afforded 2,5-dioxopyrrolidin-1-yl 3-(4,5-dibromo-2-methyl-3,6-dioxo-3,6-dihydropyridazin-1(2*H*)-yl) propanoate **7** (511 mg, 1.13 mmol, 53%) as a white solid. m.p. 100–104°C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  4.48 (t, J = 6.9 Hz, 2H), 3.68 (s, 3H), 3.11 (t, J = 6.9 Hz, 2H), 2.85 (s, 4H). <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)  $\delta$  168.7 (C), 166.0 (C), 153.3 (C), 153.1 (C), 136.9 (C), 135.3 (C), 43.0 (CH<sub>2</sub>), 35.3 (CH<sub>3</sub>), 29.1 (CH<sub>2</sub>), 25.7 (CH<sub>2</sub>). IR (solid) 2992, 1814, 1782, 1735, 1634, 1576 cm<sup>-1</sup>. Spectra data agrees with that described in Bahou *et al.* <sup>1</sup>

((1*R*,8*S*,9*S*)-Bicyclo[6.1.0]non-4-yn-9-yl)methyl (2-(2-(3-(4,5-dibromo-2-methyl-3,6-dioxo-3,6-dihydropyridazin-1(2*H*)-yl)propanamido)ethoxy)ethoxy)ethyl) carbamate<sup>1</sup> **8** 



solution 2,5-dioxopyrrolidin-1-yl 3-(2-bromo-2-methyl-3,6-dioxo-3,6-То а of dihydropyridazin-1(2H)yl) propanoate 7 (132 mg, 0.200 mmol, pre-dissolved in MeCN added *N*-[(1*R*,8*S*,9*S*)-bicyclo[6.1.0]non-4-yn-9-ylmethyloxycarbonyl]-1,8was (10 mL)), diamino-3,6-dioxaoctane (71 mg, 0.220 mmol) and the reaction mixture was stirred at 21°C for 16 hr. After this time, the reaction mixture was concentrated in vacuo and the crude residue dissolved in CHCl<sub>3</sub> (10 mL) and washed with water ( $2 \times 5$  mL) and saturated aq. K<sub>2</sub>CO<sub>3</sub> (10 mL). The organic layer was then dried (MgSO<sub>4</sub>) and concentrated in vacuo. Purification of the crude residue by flash column chromatography (0% to 10% MeOH/EtOAc) afforded ((1R,8S,9S)-Bicyclo[6.1.0]non-4-yn-9-yl)methyl (2-(2-(2-(3-(4,5-dibromo-2-methyl-3,6-dioxo-3,6-dihydropyridazin-1(2H)-yl)propanamido)ethoxy)ethoxy)ethyl) carbamate 8 (105 mg, 0.160 mmol, 72%) as a yellow oil: <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>, rotamers) δ 7.84 (s, 0.5H), 6.34 (s, 0.5H), 5.82 (s, 0.5H), 5.29 (s, 0.5H), 4.44 (t, J = 6.6 Hz, 2H), 4.14-4.12 (m, 2H), 3.73-3.71 (m, 3H), 3.60–3.38 (m, 12H), 2.62 (t, J = 6.6 Hz, 2H), 2.29-2.22 (m, 6H), 1.61–1.57 (m, 2H), 1.39–1.24 (m, 1H), 0.96–0.94 (m, 2H); <sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>, rotamers) δ 169.1 (C), 156.9 (C), 153.1 (C), 153.0 (C), 136.4 (C), 135.5 (C), 98.9 (C), 70.4 (CH<sub>2</sub>), 70.3 (CH<sub>2</sub>), 69.7 (CH<sub>2</sub>), 63.0 (CH<sub>2</sub>), 44.6 (CH<sub>2</sub>), 40.8 (CH<sub>2</sub>), 39.5 (CH<sub>2</sub>), 35.1 (CH<sub>3</sub>), 34.1 (CH<sub>2</sub>), 29.3 (CH<sub>2</sub>), 29.2 (CH<sub>2</sub>), 21.6 (CH<sub>2</sub>), 20.2 (CH<sub>2</sub>), 17.9 (CH), 14.3 (CH); IR (thin film) 3329, 2920, 2858, 1708, 1630, 1572, 1534 cm<sup>-1</sup>; LRMS (ESI), 687 (50, [M<sup>81</sup>Br<sup>81</sup>Br+Na]<sup>+</sup>) 685 (100, [M<sup>79</sup>Br<sup>81</sup>Br+Na]<sup>+</sup>), 683 (50, [M<sup>79</sup>Br<sup>79</sup>Br+Na]<sup>+</sup>), 663 (60, [M<sup>79</sup>Br<sup>81</sup>Br+H]<sup>+</sup>); HRMS (ESI) calcd for C<sub>25</sub>H<sub>35</sub>Br<sub>2</sub>N<sub>4</sub>O<sub>7</sub> [M<sup>79</sup>Br<sup>81</sup>Br+H]<sup>+</sup> 663.0847; observed 663.0846. Spectra data agrees with that described in Bahou et al.<sup>1</sup>

## **Chemical biology**

CTX F(ab) 2



CTX **1** (10 mg, 10 mg/mL) was digested with 1 mL of immobilized papain beads (CTX **1**/papain ratio 40:1) in a digest buffer (20 mM sodium phosphate monobasic, 10 mM EDTA, and 80 mM cysteine·HCl, pH = 7) for 5 hr at 37°C. Subsequently, the reaction mixture was centrifuged at 10,000 rpm for 1 min to remove the immobilised papain. The reaction mixture containing **2** was subsequently purified by passing through a Protein A column. The concentration and purity of CTX F(ab) **2** was evaluated by UV-Vis spectroscopy ( $\varepsilon_{280} = 68,590 \text{ M}^{-1} \cdot \text{cm}^{-1}$ ) and SDS-PAGE. The molecular weight of CTX F(ab) **2** was determined by LC-MS. Observed mass: 49788 Da. Glycosylation results in heterogeneous populations of F(ab), visible by LC-MS.



Figure S1. SDS-PAGE gel for CTX 1 digestion: M) Molecular weight marker. 1) Empty. 2) CTX 1. 3) CTX F(ab) 2.



Figure S2. (a) TIC, (b) non-deconvoluted LC-MS trace, (c) deconvoluted MS data for CTX F(ab)
2, (d) zoom in of deconvoluted MS data for 2, highlighting the N-Glycan residues present in the F(ab) fragment (M+145 Da, M+528 Da, M+671 Da)

.



To a solution of CTX F(ab) **2** (50  $\mu$ L, 20  $\mu$ M, 1 eq.) in BBS (25 mM sodium borate, 25 mM NaCl, 5 mM EDTA, pH 8 + 3% DMSO) was added PD **8** (1  $\mu$ L, 20 mM in DMSO, 20 eq.), followed by TCEP.HCl (1  $\mu$ L, 20 mM in H<sub>2</sub>O, 20 eq.) and the reaction mixture incubated at 21°C for 16 hr. The excess reagents were then removed by repeated diafiltration into fresh buffer using VivaSpin sample concentrators (GE Healthcare, 10,000 MWCO). Following this, analysis by SDS-PAGE, LC-MS and UV-Vis revealed > 95% conversion to CTX F(ab) **9**. Expected mass: 50,290 Da. Observed mass: 50,288 Da. Glycosylation results in heterogeneous populations of **9**.



Figure S3. UV-Vis data for CTX F(ab) 9, Pyridazinedione to antibody ratio  $\approx 0.95$ .



Figure S4. SDS-PAGE gel for successful formation of conjugate 9: M) Molecular weight marker. 1) CTX F(ab) 2. 2) CTX F(ab) + 20 eq. TCEP.HCl. 3) CTX F(ab) 9.



**Figure S5. (a)** TIC, **(b)** non-deconvoluted LC-MS trace, **(c)** deconvoluted MS data for conjugate **9** and **(d)** zoom in of deconvoluted MS data for conjugate **9**, confirming the presence of N-Glycan residues (M+145 Da, M+528 Da, M+671 Da).

CTX F(ab) 10



To a solution of conjugate **9** (50  $\mu$ L, 20  $\mu$ M, 1 eq.) in PBS (pH = 7.4) was added Alexafluor<sup>®</sup>-488-N<sub>3</sub> (0.2  $\mu$ L, 20 mM in DMSO, 4 eq.) and the reaction mixture incubated at 21°C for 2 hr. The excess reagents were then removed by repeated diafiltration into fresh buffer using VivaSpin sample concentrators (GE Healthcare, 5,000 MWCO). Successful conjugation was confirmed by SDS-PAGE, UV-Vis analysis and LC-MS. Expected mass: 50,946 Da. Observed mass: 50,946 Da. Glycosylation results in heterogeneous populations of conjugate **10**.



**Figure S6.** SDS-PAGE gel for successful formation of CTX F(ab) fluorescent conjugate **10: M)** Molecular weight marker. **1)** CTX F(ab) **2. 2)** CTX F(ab) + 20 eq. TCEP.HCl. **3)** CTX F(ab) **9. 4)** CTX F(ab) fluorescent conjugate **10. 5)** CTX F(ab) fluorescent conjugate under UV-Vis light.



**Figure S7. (a)** TIC, **(b)** non-deconvoluted LC-MS trace, **(c)** deconvoluted MS data for **10 (d)** zoom in of deconvoluted MS data for **10**, confirming the presence of N-Glycan residues in the 'clicked' F(ab) fragment (M+145 Da, M+528 Da, M+671 Da).



**Figure S8.** UV-Vis data for CTX F(ab) fluorescent conjugate **10**, Fluorophore to Antibody ratio  $\approx 0.8$ . CTX F(ab) concentration corrected using a correction factor at 280 nm of  $0.11 \times A_{495}$  for Alexafluor<sup>®</sup>-488.



**Figure S9. Binding of nanoformulations to EGFR-expressing cells.** (A) MIA PaCa-2 cells were treated with fluorescent nanoformulations (600  $\mu$ g polymer/mL) for 45 min at 4 °C. Cells were then washed and binding of the nanoformulations was assessed through fluorescence measurement. Results for native CTX F(ab) NP and modified CTX F(ab) NP [disulfide] are presented as % increase in RFU versus the corresponding nude NHS NP and nude azide NP controls, respectively. (B) BxPC-3 cells were treated with non-fluorescent nanoformulations (500  $\mu$ g polymer/mL) for 1 hr at 4 °C. Cells were then washed, stained with FITC-labelled EGFR or isotype control antibodies and analysed by flow cytometry. Representative histograms are shown for each of the numbered treatments 1 – 7, with inset values denoting the geometric mean fluorescence intensity.

## References

1) Bahou, C., Richards, D. A., Maruani, A., Love, E. A., Javaid, F., Caddick, S., Baker, J. R. & Chudasama, V. Highly homogeneous antibody modification through optimisation of the synthesis and conjugation of functionalised dibromopyridazinediones. *Org Biomol Chem* 16(8), 1359-1366 (2018).