Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2020

Synthesis of compounds

Di-tert-butyl 1-methylhydrazine-1,2-dicarboxylate?!
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To a stirring solution of N-methylhydrazine 4 (157 mg, 3.42 mmol) in i-PrOH (4.3 mL) was
added dropwise di-tert-butyl dicarbonate (1.6 g, 7.5 mmol, pre-dissolved in CH,Cl, (3.4 mL))
over 20 min. The mixture was then stirred for 16 hr at 21°C. After this time, solvent was
removed in vacuo and purification by flash column chromatography (20% Et,0/petrol)
yielded di-tert-butyl 1-methylhydrazine-1,2-dicarboxylate (407 mg, 2.05 mmol, 60%) as a
white solid: m.p. 58—62°C (lit m.p. 54-56°C). 1H NMR (600 MHz, CDCl;, rotamers) § 6.55-6.10
(brs, 1H), 3.11 (s, 3H), 1.47 (s, 18H); 13C NMR (150 MHz, CDCl;, rotamers) 6 171.2 (C), 155.9

(C), 81.3 (C), 60.4 (CHs), 28.3 (CH3); IR (solid) 3316, 2978, 2932, 1701 cm™. Spectra data
agrees with that described in Bahou et al. !



Di-tert-butyl 1-(3-(tert-butoxy)-3-oxopropyl)-2-methylhydrazine-1,2-dicarboxylate! 5
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To a solution of di-tert-butyl 1-methylhydrazine-1,2-dicarboxylate (3.00 g, 12.2 mmol) in t-
BuOH (5 mL), was added 10% NaOH (0.5 mL) and the reaction mixture stirred at 21°C for 10
min. After this, tert-butyl acrylate (5.31 mL, 36.6 mmol) was added to the solution and the
reaction mixture was heated at 60°C for 24 hr. Following this, the solvent was removed in
vacuo and the crude residue was dissolved in EtOAc (150 mL) and washed with water (3 x 50
mL). The organic layer was then dried (MgS0O,) and concentrated in vacuo. Purification of the
residue by flash column chromatography (0% to 20% EtOAc/petrol) afforded di-tert-butyl-1-
(3-(tert-butoxy)-3-oxopropyl)-2-methylhydrazine-1,2-dicarboxylate 5 (2.24 g, 5.98 mmol,
49%) as a clear oil. 'H NMR (600 MHz, CDCl3, rotamers) 6 3.85-3.52 (m, 2H), 3.06—2.99 (m,
3H), 2.51 (t, J = 7.2 Hz, 2H), 1.48-1.43 (m, 27H). 3C NMR (150 MHz, CDCls, rotamers) 6 171.0
(C), 155.4 (C), 154.4 (C), 81.0 (C), 44.6 (CH3), 36.6 (CH;), 34.1 (CH,), 28.3 (CHs). IR (thin film)
2976, 2933, 1709 cm. LRMS (ESI) 375 (100, [M+H]*), 319 (30, [M-C4Hg+2H]*). HRMS (ESI)
calcd for CigH35N,0¢ [M+H]* 376.2524; observed 376.2516. Spectra data agrees with that
described in Bahou et al. !



3-(4,5-Dibromo-2-methyl-3,6-dioxo-3,6-dihydropyridazin-1(2H)-yl) propanoic acid! 6
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Dibromomaleic acid (4.93 g, 17.9 mmol) was dissolved in AcOH (25 mL) and heated under
reflux for 30 min. To this solution, was added di-tert-butyl-1-(3-(tert-butoxy)-3-oxopropyl)-2-
methylhydrazine-1,2-dicarboxylate 5 (5.60 g, 14.9 mmol) and the reaction heated under
reflux for a further 4 hr. After this time, the reaction mixture was then concentrated in vacuo
with toluene co-evaporation (3 x 30 mL, as an azeotrope) and the crude residue purified by
flash column chromatography (50% to 100% EtOAc/petrol (1% AcOH)) to afford 3-(4,5-
dibromo-2-methyl-3,6-dioxo-3,6-dihydropyridazin-1(2H)-yl) propanoic acid 6 (3.41 g, 9.57
mmol, 64%) as a yellow solid. m.p. 140-144°C 'H NMR (600 MHz, DMSO-dg) 6 4.28 (t,/=7.3
Hz, 2H), 3.56 (s, 3H), 2.63 (t, J = 7.3 Hz, 2H). 3C NMR (150 MHz, DMSO-d¢) 6 171.9 (C), 152.7
(C), 152.4 (C), 135.3 (C), 135.0 (C), 43.1 (CH3), 34.7 (CH,), 31.7 (CH,). IR (solid) 3044, 1725,
1606, 1570 cm™ LRMS (ESI). 359 (50, [M&Br81Br+H]*) 357 (100, [M7°Br8!Br+H]*), 355 (50,
[M7°Br7°Br+H]*). HRMS (ESI) calcd for CgHoBr,N,O, [M7°Br81Br+H]* 358.8883; observed
358.8882. Spectra data agrees with that described in Bahou et al.?



2,5-Dioxopyrrolidin-1-yl 3-(4,5-dibromo-2-methyl-3,6-dioxo-3,6-dihydropyridazin-1(2H)-yl)
propanoate! 7
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A solution of 3-(4,5-dibromo-2-methyl-3,6-dioxo-3,6-dihydropyridazin-1(2H)-yl) propanoic
acid 6 (750 mg, 2.13 mmol) in THF (10 mL) was cooled to 0°C and was added N,N’-
dicyclohexylcarbodiimide (480 mg, 2.34 mmol). The homogenous solution was then stirred
at 0°C for 30 min. After this time, was added N-hydroxysuccinimide (89 mg, 0.78 mmol) and
the reaction stirred at 21°C for a further 16 hr. The newly formed heterogeneous mixture
was then filtered and the filtrate concentrated in vacuo. Purification of the crude residue by
flash column chromatography (20% to neat EtOAc/petrol) afforded 2,5-dioxopyrrolidin-1-yl
3-(4,5-dibromo-2-methyl-3,6-dioxo-3,6-dihydropyridazin-1(2H)-yl) propanoate 7 (511 mg,
1.13 mmol, 53%) as a white solid. m.p. 100-104°C. 'H NMR (600 MHz, CDCl;) 6 4.48 (t,)J =6.9
Hz, 2H), 3.68 (s, 3H), 3.11 (t, J = 6.9 Hz, 2H), 2.85 (s, 4H). 13C NMR (150 MHz, CDCls) & 168.7
(C), 166.0 (C), 153.3 (C), 153.1 (C), 136.9 (C), 135.3 (C), 43.0 (CH,), 35.3 (CHs), 29.1 (CH,), 25.7
(CH,). IR (solid) 2992, 1814, 1782, 1735, 1634, 1576 cm'l. Spectra data agrees with that
described in Bahou et al. !



((1R,85,95)-Bicyclo[6.1.0]non-4-yn-9-yl)methyl (2-(2-(2-(3-(4,5-dibromo-2-methyl-3,6-dioxo-
3,6-dihydropyridazin-1(2H)-yl)propanamido)ethoxy)ethoxy)ethyl) carbamate! 8
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To a solution of  2,5-dioxopyrrolidin-1-yl 3-(2-bromo-2-methyl-3,6-dioxo-3,6-
dihydropyridazin-1(2H)yl) propanoate 7 (132 mg, 0.200 mmol, pre-dissolved in MeCN
(10 mL)), was added N-[(1R,8S,9S5)-bicyclo[6.1.0]non-4-yn-9-yImethyloxycarbonyl]-1,8-
diamino-3,6-dioxaoctane (71 mg, 0.220 mmol) and the reaction mixture was stirred at 21°C
for 16 hr. After this time, the reaction mixture was concentrated in vacuo and the crude
residue dissolved in CHCl; (10 mL) and washed with water (2 x 5 mL) and saturated aq. K,CO;
(10 mL). The organic layer was then dried (MgS0,) and concentrated in vacuo. Purification of
the crude residue by flash column chromatography (0% to 10% MeOH/EtOAc) afforded
((1R,8S,9S5)-Bicyclo[6.1.0]non-4-yn-9-yl)methyl (2-(2-(2-(3-(4,5-dibromo-2-methyl-3,6-dioxo-
3,6-dihydropyridazin-1(2H)-yl)propanamido)ethoxy)ethoxy)ethyl) carbamate 8 (105 mg,
0.160 mmol, 72%) as a yellow oil: 'H NMR (600 MHz, CDCl;, rotamers) 6 7.84 (s, 0.5H), 6.34
(s, 0.5H), 5.82 (s, 0.5H), 5.29 (s, 0.5H), 4.44 (t, J = 6.6 Hz, 2H), 4.14—4.12 (m, 2H), 3.73-3.71
(m, 3H), 3.60-3.38 (m, 12H), 2.62 (t, J = 6.6 Hz, 2H), 2.29-2.22 (m, 6H), 1.61-1.57 (m, 2H),
1.39-1.24 (m, 1H), 0.96—0.94 (m, 2H); 13C NMR (150 MHz, CDCl;, rotamers) 6 169.1 (C), 156.9
(C), 153.1 (C), 153.0 (C), 136.4 (C), 135.5 (C), 98.9 (C), 70.4 (CH,), 70.3 (CH,), 69.7 (CH,), 63.0
(CH,), 44.6 (CH,), 40.8 (CH,), 39.5 (CH,), 35.1 (CHs), 34.1(CH,), 29.3 (CH,), 29.2 (CH,),
21.6 (CH,), 20.2 (CH,), 17.9 (CH), 14.3 (CH); IR (thin film) 3329, 2920, 2858, 1708, 1630, 1572,
1534 cm'l; LRMS (ESI), 687 (50, [MB1Br8iBr+Na]*) 685 (100, [M7°Br8lBr+Nal*), 683 (50,
[M7°Br7?Br+Na]*), 663 (60, [M7°Br81Br+H]*); HRMS (ESI) caled for CysH35BraN,O;
[M7°Br81Br+H]* 663.0847; observed 663.0846. Spectra data agrees with that described in
Bahou et al.!



Chemical biology

CTX F(ab) 2

CTX 1 (10 mg, 10 mg/mL) was digested with 1 mL of immobilized papain beads (CTX 1/papain
ratio 40:1) in a digest buffer (20 mM sodium phosphate monobasic, 10 mM EDTA, and 80
mM cysteine-HCl, pH=7) for 5 hr at 37°C. Subsequently, the reaction mixture was
centrifuged at 10,000 rpm for 1 min to remove the immobilised papain. The reaction mixture
containing 2 was subsequently purified by passing through a Protein A column. The
concentration and purity of CTX F(ab) 2 was evaluated by UV-Vis spectroscopy (€330 =
68,590 M~1.cm) and SDS-PAGE. The molecular weight of CTX F(ab) 2 was determined by LC-
MS. Observed mass: 49788 Da. Glycosylation results in heterogeneous populations of F(ab),
visible by LC-MS.
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Figure S1. SDS-PAGE gel for CTX 1 digestion: M) Molecular weight marker. 1) Empty. 2) CTX
1.3) CTX F(ab) 2.
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Figure S2. (a) TIC, (b) non-deconvoluted LC-MS trace, (c) deconvoluted MS data for CTX F(ab)
2, (d) zoom in of deconvoluted MS data for 2, highlighting the N-Glycan residues present in
the F(ab) fragment (M+145 Da, M+528 Da, M+671 Da)
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CTX F(ab) 9

0 ()PD 8 0

To a solution of CTX F(ab) 2 (50 uL, 20 uM, 1 eq.) in BBS (25 mM sodium borate, 25 mM
NaCl, 5 mM EDTA, pH 8 + 3% DMSO) was added PD 8 (1 uL, 20 mM in DMSO, 20 eq.),
followed by TCEP.HCI (1 uL, 20 mM in H,0, 20 eq.) and the reaction mixture incubated at
21°C for 16 hr. The excess reagents were then removed by repeated diafiltration into fresh
buffer using VivaSpin sample concentrators (GE Healthcare, 10,000 MWCO). Following this,
analysis by SDS-PAGE, LC-MS and UV-Vis revealed > 95% conversion to CTX F(ab) 9. Expected
mass: 50,290 Da. Observed mass: 50,288 Da. Glycosylation results in heterogeneous
populations of 9.
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Figure S3. UV-Vis data for CTX F(ab) 9, Pyridazinedione to antibody ratio = 0.95.



Kba M 1 2 3

250
130
100

70

55

35

25

Figure S4. SDS-PAGE gel for successful formation of conjugate 9: M) Molecular weight
marker. 1) CTX F(ab) 2. 2) CTX F(ab) + 20 eq. TCEP.HCI. 3) CTX F(ab) 9.
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Figure S5. (a) TIC, (b) non-deconvoluted LC-MS trace, (c) deconvoluted MS data for
conjugate 9 and (d) zoom in of deconvoluted MS data for conjugate 9, confirming the

presence of N-Glycan residues (M+145 Da, M+528 Da, M+671 Da).
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CTX F(ab) 10
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To a solution of conjugate 9 (50 uL, 20 uM, 1 eq.) in PBS (pH = 7.4) was added Alexafluor®-
488-N3 (0.2 puL, 20 mM in DMSO, 4 eq.) and the reaction mixture incubated at 21°C for 2 hr.
The excess reagents were then removed by repeated diafiltration into fresh buffer using
VivaSpin sample concentrators (GE Healthcare, 5,000 MWCO). Successful conjugation was
confirmed by SDS-PAGE, UV-Vis analysis and LC-MS. Expected mass: 50,946 Da. Observed
mass: 50,946 Da. Glycosylation results in heterogeneous populations of conjugate 10.
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Figure S6. SDS-PAGE gel for successful formation of CTX F(ab) fluorescent conjugate 10: M)

Molecular weight marker. 1) CTX F(ab) 2. 2) CTX F(ab) + 20 eq. TCEP.HCI. 3) CTX F(ab) 9. 4)
CTX F(ab) fluorescent conjugate 10. 5) CTX F(ab) fluorescent conjugate under UV-Vis light.
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Figure S7. (a) TIC, (b) non-deconvoluted LC-MS trace, (c) deconvoluted MS data for 10 (d)
zoom in of deconvoluted MS data for 10, confirming the presence of N-Glycan residues in
the ‘clicked’ F(ab) fragment (M+145 Da, M+528 Da, M+671 Da).
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Figure S8. UV-Vis data for CTX F(ab) fluorescent conjugate 10, Fluorophore to Antibody ratio
= 0.8. CTX F(ab) concentration corrected using a correction factor at 280 nm of 0.11 X Ajgs
for Alexafluor®-488.
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Figure S9. Binding of nanoformulations to EGFR-expressing cells. (A) MIA PaCa-2 cells were
treated with fluorescent nanoformulations (600 pg polymer/mL) for 45 min at 4 °C. Cells
were then washed and binding of the nanoformulations was assessed through fluorescence
measurement. Results for native CTX F(ab) NP and modified CTX F(ab) NP [disulfide] are
presented as % increase in RFU versus the corresponding nude NHS NP and nude azide NP
controls, respectively. (B) BxPC-3 cells were treated with non-fluorescent nanoformulations
(500 pg polymer/mL) for 1 hr at 4 °C. Cells were then washed, stained with FITC-labelled
EGFR or isotype control antibodies and analysed by flow cytometry. Representative
histograms are shown for each of the numbered treatments 1 — 7, with inset values denoting
the geometric mean fluorescence intensity.
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