Supplementary information

Insights into regularity of 2D 3*d* transition metal monocarbides formation

K.V. Larionov^{1,2*}, G. Seifert,³ P.B. Sorokin^{1,2}

¹ National University of Science and Technology MISiS, 4 Leninskiy prospekt, Moscow, 119049, Russian Federation

² Moscow Institute of Physics and Technology, Institute lane 9, Dolgoprudniy, Moscow region, Russia

³ Technische Universitaet Dresden, Bergstr. 66b, Dresden, Germany

* konstantin.larionov@phystech.edu

Table S1. Summarized data on the energy of 3*d* metal monocarbides in the case of different lattice and magnetic configuration. All number are presented in eV per one TM-C pair. Empty cells mean that corresponding state was not found.

ТМС	Lattice	NM	FM	AFM1	AFM2	AFM3
ScC	0-	-	-	-	-	-
	t-	-14.29	-	-	-	-
	S-	-13.99	-	-	-	-
	<i>g</i> -	-13.22	-	-	-	-
TiC	0-	-15.80	-15.86	-15.80	-15.80	-15.81
	t-	-16.35	-	-	-	-
	S-	-16.23	-	-	-	-
	<i>g</i> -	-15.40	-	-	-	-
VC	0-	-16.75	-	-	-	-
	t-	-17.34	-	-	-17.34	-
	S-	-16.92	-16.95	-	-16.96	-
	<i>g</i> -	-15.68	-15.90	-15.86	-	-
CrC	0-	-17.07	-17.10	-17.43	-17.21	-17.27
	<i>t-</i>	-17.36	-17.48	-17.38	-	-17.41
	S-	-16.81	-17.28	-	-17.20	-
	<i>g</i> -	-15.80	-16.40	-16.14	-	-
MnC	0-	-16.61	-16.92	-16.90	-16.97	-16.99
	<i>t-</i>	-16.96	-17.09	-16.99	-	-17.01
	S-	-16.27	-16.51	-16.24	-16.38	-
	<i>g</i> -	-	-15.90	-	-	-
FeC	0-	-15.83	-16.13	-16.05	-16.05	-15.92
	<i>t-</i>	-16.16	-	-	-	-
	S-	-15.31	-15.30	-	-15.33	-
	<i>g</i> -	-14.98	-	-14.99	-	-
CoC	0-	-14.90	-14.91	-	-14.94	-
	<i>t-</i>	-14.76	-	-	-	-
	S-	-14.19	-	-	-	-
	<i>g</i> -	-13.69	-	-	-	-
NiC	0-	-13.49	-13.49	-	-	-
	<u>t-</u>	-12.44	-	-	-	-
	S-	-12.21	-	-	-	-
	<i>g</i> -	-	-	-	-	-
CuC	0-	-11.47	-	-	-	-
	<i>t</i> -	-9.37	-	-	-	-
	S-	-9.20	-	-	-	-
	g-	-	-	-	-	-

Figure S1. Possible antiferromagnetic configurations of *t*-TMC, *o*-TMC, *s*-TMC, and *g*-TMC, considered in Table S1.

Figure S2. Calculated energy difference between *rs* bulk and 2D TMC phase: *t*-TMC or *o*-TMC shown by blue and green points, respectively. The structures of bulk *rs*-TMC, 2D *t*-TMC and *o*-TMC phases are shown above, where olive and grey spheres correspond to transition metal and carbon atoms, respectively.

Figure S3. Views on different crystal directions of *t*-TMC bulk crystal (represented as AA' stack of separate *t*-TMC monolayers, see top row) and hexagonal-like *h*-TMC phase (see bottom row).

Figure S4. Transition pathway of VC monocarbide through a barrier, E_b , from hexagonallike *h*-VC phase to energy favorable rocksalt (*rs*-VC) phase.

Figure S5. Calculated energy difference between proposed bulk phase consisted of AA stack of weakly bounded *o*-TMC monolayers (E_{o-TMC}) and rocksalt (E_{rs-TMC}) phase. Side views on their atomic structure are presented on the top, where olive and grey spheres correspond to transition metal and carbon atoms, respectively.